Practical lattice reductions
 for CTF challenges

Robin Jadoul
2024/02/23
Bootcamp ICC Team Europe, Athens, Greece

Outline

1. Lattices?
2. Why lattices?
3. How lattices?
4. Lattice tips and tricks
5. Common lattice problems
6. Building with lattices
7. Get your hands dirty

Lattices?

- "A lattice \mathcal{L} of dimension n is a discrete additive subgroup of \mathbb{R}^{n}."
- It's a group \Rightarrow addition, scalar mult
- Discrete \Rightarrow we can map it to \mathbb{Q}^{n} or \mathbb{Z}^{n}
- A group is a \mathbb{Z}-module, so think vector spaces
- Pick a basis $\boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n}$
- We usually write b_{i} as rows of \boldsymbol{B}
- $\mathcal{L}=\left\{\sum a_{i} \cdot \boldsymbol{b}_{i} \mid \boldsymbol{a} \in \mathbb{Z}^{n}\right\}$
- Many choices of \boldsymbol{B}

Lattices

https://en.wikipedia.org/wiki/Lattice_reduction

- "Fundamental parallelepiped" $\mathcal{P}(\boldsymbol{B})$: a single "enclosed region" - $\mathcal{P}(\boldsymbol{B})=\left\{\sum a_{i} \cdot \boldsymbol{b}_{i} \mid \boldsymbol{a} \in[0,1)\right\}$
- \mathbb{R}^{n} is tiled by $\mathcal{P}(\boldsymbol{B})$
- $\operatorname{det}(\mathcal{L})=\operatorname{vol}(\mathcal{P}(\boldsymbol{B})))=|\operatorname{det}(\boldsymbol{B})|$
- Invariant, independent of \boldsymbol{B}
- Base change: invertible and unimodular
- Successive minima: $\lambda_{i}(\mathcal{L})$
- $\lambda_{1}(\mathcal{L})$ length of shortest vector
- $\lambda_{1}(\mathcal{L}) \leq \sqrt{n}|\operatorname{det}(\mathcal{L})|^{\frac{1}{n}}$
- $\operatorname{GM}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\prod \lambda_{i}\right)^{\frac{1}{n}} \leq \sqrt{n}|\operatorname{det}(\mathcal{L})|^{\frac{1}{n}}$
- Distance $\mu(\boldsymbol{t}, \mathcal{L})=\min _{\boldsymbol{v} \in \mathcal{L}}\|\boldsymbol{t}-\boldsymbol{v}\|$

Lattice properties

https://simons.berkeley.edu/sites/default/files/docs/14953/intro.pdf

https://simons.berkeley.edu/sites/default/files/docs/14953/intro.pdf

Sage

from sage.modules.free_module_integer import IntegerLattice B = Matrix(QQ, [[1, 0], [0, 2]])/2
L = IntegerLattice(B.denominator() * B, lll_reduce=False) \# Warning, may be slow :)
L.shortest_vector() \# (1, 0)
L.closest_vector((123/42, 345/12)) \# (3, 28)
L.volume() \# 2

Why lattices?

- Many things in lattices are hard
- SVP: "shortest vector problem"
- CVP: "closest vector problem"
- SIS: "short integer solutions"
- \Rightarrow build trapdoors, e.g. LWE
- Hopefully post-quantum too
- See later
- Many things are "small"
- Many things are discrete
- e.g. some instances of integer programming
- RSA: $p q-\varphi(p q)=p+q-1$ is "small" wrt. $p q$
- Breaking lattice schemes
- Generally: linear structure
- Think about linear systems with small solutions
- Known to break many crypto "weaknesses"
- Some bias in your RNG? Lattices will break it.
- Chose your RSA private key wrong? Lattices will break it.
- Lost some precision in your floating points calculations? Lattices might help.
- Some think they even might break factoring :)

How lattices?

- Starting point: some basis \boldsymbol{B}
- Goal: good basis B^{\prime}
- But what is good?
- And how do we find it?

Good lattices

- Goal: find a better basis
- Good basis?
- Shorter basis vectors
- Close to orthogonal
- Find some short vectors
- Great basis?
- Read off $\lambda_{1}(\mathcal{L})$
- Read off all $\lambda_{i}(\mathcal{L})$?
- We know $\operatorname{det}(\mathcal{L})$ is constant
- Want: shorter \boldsymbol{b}_{i}
- So we need wider angles between all \boldsymbol{b}_{i} to have more area
- Hence, more orthogonal
- Gram-Schmidt orthogonalization
- But breaks the lattice
- Use it as a guideline
- LLL (Lenstra-Lenstra-Lovász)
- Polynomial time $\mathcal{O}\left(n^{6} \log ^{3}\|\boldsymbol{B}\|_{\infty}\right)$
- $\left\|\boldsymbol{b}_{1}^{\prime}\right\| \leq 2^{\frac{n-1}{2}} \lambda_{1}(\mathcal{L})$
- HKZ (Hermite-Korkine-Zolotarev)
- Exponential time
- $\left\|\boldsymbol{b}_{1}^{\prime}\right\|=\lambda_{1}(\mathcal{L})$
- BKZ (Block (H)KZ)
- Parametrized by block size β
- Larger β : slower
- Smaller β : worse basis
- Sieving and other costly approaches

Basis reduction in 2D

- In two dimensions, exact is easy
- Provides some basic intuition for LLL
- Looks like GCD
def gauss_reduction(v1, v2):
while True:

$$
\begin{aligned}
& \text { if v2.norm() < v1.norm(): } \\
& \text { v1, v2 = v2, v1 \# swap step } \\
& \mathrm{m}=\text { round ((v1 * v2) / (v1 * v1)) } \\
& \text { if } m==0 \text { : } \\
& \text { return (v1, v2) } \\
& \text { v2 = v2 - m*v1 \# reduction step }
\end{aligned}
$$

A brief look at LLL

```
def LLL(B, delta):
    Q = gram schmidt(B)
    def mu(i,j):
        v = B[i]
        u = Q[j]
        return (v*u) / (u*u)
    n, k = B.nrows(), 1
    while k < n:
        # length reduction step
        for j in reversed(range(k)):
            if abs(mu(k,j)) > .5:
                B[k] = B[k] - round(mu(k,j))*B[j]
                Q = gram_schmidt(B)
        # swap step
        if Q[k]*Q[k] >= (delta - mu(k,k-1)**2)*(Q[k-1]*Q[k-1]):
            k = k + 1
        else:
            B[k], B[k-1] = B[k-1], B[k]
            Q = gram_schmidt(B)
            k = max(k-1, 1)
```

 return B

Lattice tips and tricks

Weights

$$
\boldsymbol{z}=a_{1} \boldsymbol{v}_{1}+\ldots+a_{m} \boldsymbol{v}_{m}
$$

- $m>n$
- All a_{i} small
- Linear system with a small solution
- But underdetermined
- So not just linear algebra
- (approximate) SVP would find a short solution

Weights

$$
\left(\begin{array}{ccccc}
z & 0 & 0 & \ldots & 0 \\
-\boldsymbol{v}_{1} & 1 & 0 & \ldots & 0 \\
-\boldsymbol{v}_{2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\boldsymbol{v}_{m} & 0 & 0 & \ldots & 1
\end{array}\right)
$$

- But, what if we have some remaining short $\boldsymbol{r}=\boldsymbol{z}-\sum a_{i} \boldsymbol{v}_{i}$?
- To LLL, short is short
- Assign higher weights W to first columns
- $\Rightarrow W r$ not so short anymore
- Could even vary W_{i} for element of \boldsymbol{z}
- Note: short vectors can also be the negation of what you search

Weights

$$
\left(\begin{array}{ccccc}
W \boldsymbol{z} & 0 & 0 & \ldots & 0 \\
-W \boldsymbol{v}_{1} & 1 & 0 & \ldots & 0 \\
-W \boldsymbol{v}_{2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-W & \boldsymbol{v}_{m} & 0 & 0 & \ldots
\end{array}\right)
$$

```
z = vector(ZZ, [...])
v = Matrix(ZZ, m, n, [[...], ...])
L = Matrix.block([[Matrix(z), 0], [v, 1]])
W = Matrix.diagonal([w1, w2, ..., wn, 1, 1, ..., 1])
L = (L * W).LLL() / W
```

1. Wing it and hope for the best :)

- Works fairly often
- Can finetune with synthetic data
- Wiggling weights can even help finding different solutions

2. Investigate expected weights

- Mostly when different columns have different expected weights in the target vector
- Observe: outliers in $\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}$ weigh more
- So the goal is: make all v_{i} roughly equal
- Investigate expected result in target vector
- Modify weights per column so target vector is all 1 (or arbitrary constant like 2^{128})
- Sometimes, switch view to CVP
- Rather than solving a linear system, you're close to some lattice point
- e.g. integer multiple + random noise (see LWE later)
- So looking for a lattice vector close to our target
- Either close vector is final goal
- Or just solve with linear algebra after
- If you have a range of values, put the target in the center

Kannan embedding

$$
\left(\begin{array}{cc}
B & 0 \\
t & q
\end{array}\right)
$$

- Embed CVP into an SVP instance
- Likely close to what you started with
- Short vector: $(\boldsymbol{t}-\boldsymbol{B} \boldsymbol{c}, q)$
- $q \sim$ a weight, matters for results

Babai's closest plane

- Uses a reduced basis for the original lattice
- Greedy algorithm
- Iteratively project each coordinate onto the closest hyperplane
- In sage, over \mathbb{Q} : GS step is generally slow
- Exact numbers that grow fast-ish
def Babai_CVP(mat, target):
M = IntegerLattice(mat, lll_reduce=True).reduced_basis
G = M.gram_schmidt()[0]
diff = target
for i in reversed(range(G.nrows())):
diff -= M[i] * ((diff * G[i]) / (G[i] * G[i])).round()
return target - diff
- When LLL is fast enough, but gives no results
- Consider trying BKZ instead
- Experiment with block size β, synthetic data is good
- $(\beta=n) \equiv \mathrm{HKZ}$
- For more speed (especially coppersmith): consider flatter

Magic tricks for fast exploration

- Got a linear system and some bounds?
- Why not try asking nicely
- rkm0959 made a tool/library: rkm0959/Inequality_Solving_with_CVP
- Could even make a wrapper for convenience
- Good for first exploration, not always foolproof
- Your target is not always the shortest
- Or even in the basis for that matter
- It's still short though
- It's a small linear combination of basis vectors
- Try bruteforce
- Or random combinations
- fp(y)lll also has structured enumeration
- Optionally with extra pruning
- badly documented
- https://fpylll.readthedocs.io/en/latest/modules.html

```
from fpylll import IntegerMatrix
from fpylll.fplll.gso import MatGSO
from fpylll.fplll.enumeration import (Enumeration,
                                    EvaluatorStrategy)
A = IntegerMatrix.from_matrix(M.LLL())
count = 2000
G = MatGSO(A)
G.update_gso()
enum = Enumeration(G, nr_solutions=count,
        strategy=EvaluatorStrategy.BEST_N_SOLUTIONS)
n = M.nrows()
for vec, length in enum.enumerate(0, n, max_dist, 0, t):
```

- Polynomials form a vector space
- If degree is bounded/fixed
- Over \mathbb{R} or otherwise
- So we can take a discrete additive subgroup of them
- Look, ma, it's a lattice!
- Basis for coppersmith's method and ring-LWE (see later)
- Hmm, I have a lattice over \mathbb{F}_{2}
- While that may be true, "small" mostly breaks down
- Have a look at coding theory instead
- Techniques like ISD can be very powerful here
- Can also apply over
- \mathbb{F}_{3} or other small fields
- Fields of small characteristic $\left(\mathbb{F}_{2^{k}}\right.$ etc)

Common lattice problems

- Instead of working over \mathbb{Z}, we now want $\mathbb{Z} / q \mathbb{Z}$
- Keep thinking about linear systems
- $\sum a_{i} x_{i} \equiv y \quad(\bmod q)$
- $\sum a_{i} x_{i}=y+k q$
- Repeat a few times
- Stack $q \cdot I_{m}$ under your matrix
- Given:
- A set $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- A value $v=\sum b_{i} s_{i}$, with $b_{i} \in\{0,1\}$
- Find appropriate b_{i}
- Often called a knapsack problem
- More accurately it's a subset sum problem
- there are no values attached
- Known public key cryptosystem
- Merkle-Damgård
- Broken by lattices (low density)

$$
\left(\begin{array}{ccccc}
v & 0 & 0 & \ldots & 0 \\
-s_{1} & 1 & 0 & \ldots & 0 \\
-s_{2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-s_{n} & 0 & 0 & \ldots & 1
\end{array}\right)
$$

- Short vector $\left(0, b_{1}, b_{2}, \ldots, b_{n}\right)$
- Rephrase as CVP
- Leave out first row
- Target: $(v, 0,0, \ldots, 0)$
- Optimize CVP:
- Want $b_{i} \in\{0,1\}$, so centered around $\frac{1}{2}$
- Can do the same trick in the original lattice

Think about it:

- What about a more general version
- $b_{i} \in \mathcal{X}$
- Knapsack: optimize for some value t_{i}
- Dealing with negative numbers
- Parallel instances
- Modular
- ...
- Hidden Subset Sum problem
- Don't forget to look at the negatives in your reduced basis!

Approximate GCD

- Given: samples $x_{i}=q_{i} p+r_{i}$, with small r_{i}
- Target: Find p, the gcd of the samples, up to errors r_{i}
- Partial AGCD: $r_{0}=0$
- i.e. $x_{0}=q_{0} p$
- e.g. RSA with extra information

AGCD: SDA

- $\frac{x_{i}}{x_{0}} \approx \frac{q_{i}}{q_{0}}$
- Find candidate q_{0}
- Recover p from $x_{0}, q+0$
- Short vector: $\left(W q_{0}, q_{0} r_{1}-q_{1} r_{0}, \ldots\right)$

$$
\left(\begin{array}{ccccc}
W & x_{1} & x_{2} & \ldots & x_{n} \\
0 & x_{0} & 0 & \ldots & 0 \\
0 & 0 & x_{0} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & x_{0}
\end{array}\right)
$$

AGCD: Orthogonal lattice

- Orthogonal lattice
- $\mathcal{L}^{\perp}=\{\boldsymbol{v} \mid \forall b \in \mathcal{L},\langle\boldsymbol{v}, \boldsymbol{b}\rangle=0\}$
- Observe: $\mathcal{L} \subseteq\left(\mathcal{L}^{\perp}\right)^{\perp}$
- Useful for some problems, including hidden subset sum
- General idea: find short vector orthogonal to some target
- Often just to one vector or a lattice with 2 basis vectors
- Then derive some useful quantity
- $\mathcal{L}(\boldsymbol{q}, \boldsymbol{r})^{\perp} \subseteq \mathcal{L}(\boldsymbol{x})^{\perp}$, and short
- reduce $\mathcal{L}(\boldsymbol{x})^{\perp}$ to find a sub-basis spanning $\mathcal{L}(\boldsymbol{q}, \boldsymbol{r})$
- recover $\boldsymbol{q}, \boldsymbol{r}$

$$
\alpha_{i} x+\rho_{i} k_{i} \equiv \beta_{i} \quad(\bmod N)
$$

- k_{i} bounded
- See (EC)DSA biased nonce attacks
- $\alpha_{i}=-r_{i}, \rho_{i}=s_{i}, \beta_{i}=H-2^{t} \mathrm{MSB}_{\text {nonce }}, k_{i}=\mathrm{LSB}_{\text {nonce }}$
- Key realization: $k_{i} \equiv \frac{\beta_{i}-\alpha_{i} x}{\rho_{i}}$ is bounded/small
- Try to build the lattice ;)
- Or read biased nonce papers
- Generalization: EHNP
- Support multiple "holes"
- Formulation gets complex
- "Just" implementing the paper is feasible

Coppersmith's Method

- Shift in focus
- No longer linear systems... one polynomial
- $f(x) \equiv 0(\bmod N)$, monic, $x<X$ bounded
- Or even $\bmod d \approx N^{\beta}$ with $d \mid N$
- Sage has f.small_roots(), with some parameters
- or use implementation from kiona/defund/...
- flatter usually works very well for these
- $X<N^{\frac{\beta^{2}}{\operatorname{deg}(f)}-\varepsilon}$
- ε is a useful parameter for sage
- Smaller ε is slower, maybe brute some bits
- Multivariate (heuristic) generalizations

Coppersmith intuition

- Generate polynomials sharing roots $(\bmod N)$
- $x^{k} f(x)$
- $N^{k} f(x)$
- $f^{k}(x)$

。 $\Rightarrow x^{i} N^{j} f^{k}(x)$

- Find small f^{\prime} over \mathbb{Z}
- Lattice reduction
- Factor over \mathbb{Z}
- Check results $(\bmod N)$
- Multivariate
- Extract roots from multiple polynomials
- Gröbner basis, resultants, ...

Coppersmith attacks

- RSA: stereotyped message

$$
\text { - } f(x)=(K+x)^{e}-c \equiv 0 \quad(\bmod N), x \text { small }
$$

- RSA: partially known factor
- $f(x)=\left(p_{\text {high }}+x\right) \equiv 0 \quad(\bmod p), x<N^{\frac{1}{4}}, p \mid N$
- Boneh-Durfee

$$
\begin{aligned}
& \text { - } f(x, y)=x((N+1)-y) \equiv 0 \quad(\bmod e) \\
& \text { - } y=-(p+q), x \text { modular "wraps" }
\end{aligned}
$$

- AGCD
- Multivariate

Building with lattices

Learning With Errors

$$
\begin{aligned}
s & \leftarrow \chi_{\mathrm{k}}^{n} \\
a_{i} & \leftarrow \mathbb{Z}_{q}^{n} \\
e_{i} & \leftarrow \chi_{\mathrm{e}} \\
b_{i} & =\left\langle\boldsymbol{s}, \boldsymbol{a}_{i}\right\rangle+e_{i}
\end{aligned}
$$

$$
b=A s+e
$$

- Distinguishing
- Key recovery
- Embedding messages
- $b=\langle s, a\rangle+e+\frac{q}{p} \cdot m$
- $b=\langle s, \boldsymbol{a}\rangle+p \cdot e+m$

Ring-LWE

$$
\begin{aligned}
R & =\mathbb{Z}[X] / f(X), f \text { monic irreducible, } \operatorname{deg}(f)=N \\
R_{q} & =R / q R \\
s(X) & \leftarrow \chi_{\mathrm{k}}^{N} \in R_{q} \\
e(X) & \leftarrow \chi_{\mathrm{e}}^{N} \in R_{q} \\
b_{i}(X) & =a_{i}(X) \cdot s(X)+e_{i}(X)
\end{aligned}
$$

Ring-LWE

$$
b_{i}(X)=a_{i}(X) \cdot s(X)+e_{i}(X)
$$

$$
\boldsymbol{b}_{\boldsymbol{i}}=\left(\begin{array}{cccc}
a_{i, 1} & \left(X^{-1} a\right)_{1} & \cdots & \left(X^{-N+1} a\right)_{1} \\
a_{i, 2} & \left(X^{-1} a\right)_{2} & \cdots & \left(X^{-N+1} a\right)_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i, N} & \left(X^{-1} a\right)_{N} & \cdots & \left(X^{-N+1} a\right)_{N}
\end{array}\right) \cdot s+e_{i}
$$

$$
\begin{aligned}
R & =\mathbb{Z}[X] /\left(X^{N} \pm 1\right) \\
R_{q} & =R / q R \\
f & \leftarrow \chi^{N} \in R_{q}, \exists f^{-1} \\
g & \leftarrow \chi^{N} \in R_{q} \\
h & =\frac{g}{f}
\end{aligned}
$$

- Distinguishing
- Recover f
- Embedding messages

$$
\begin{aligned}
& \text { - } f=p \cdot f^{\prime}+1 \\
& \text { - } c=\frac{g}{f}+\frac{q}{p} \cdot m \\
& \text {. } c \cdot f \equiv g+\frac{q}{p} \cdot m \cdot p \cdot f^{\prime}+\frac{q}{p} \cdot m
\end{aligned}
$$

- Alternative:

$$
h=p \cdot \frac{g}{f}, c=r \cdot h+m
$$

- Parameters matter: NTRU fatigue/overstretched NTRU

$$
\left(\begin{array}{ll}
1 & h \\
0 & q
\end{array}\right)
$$

- Matrix form for $h($ and $0,1, q)$
- (anti-)circulant matrix
- short vector: $(f, g)=f \cdot(1, h)+k \cdot(0, q)$
- https://github.com/malb/lattice-estimator
- Viability
- Ideas for attacks to look at
- Making sure your own lattices are safe?
- https://github.com/WvanWoerden/NTRUFatigue
- Specifically for NTRU
- Fatigue/overstretched regime

Linear algebra

- Basis is linear algebra + noise
- Sometimes the noise is not there
- Or not enough
- So just throw matrices at it

Lattice reduction

- AKA primal attack
- The straightforward thing

Breaking things

Weak structure

- RLWE/NTRU/... in a weird ring
- Composite modulus
- Reducible polynomial
- ...
- Chinese remainder theorem
- AKA working mod a factor
- Depends on end goal

Breaking things

Linearization

- Arora-Ge attack
- Consider $e \in\{-1,0,1\}$
- Write $v=\langle s, a\rangle-b$
- $v \cdot(v-1) \cdot(v+1) \equiv 0$
- Max degree: 3
- Enough samples \rightarrow each monomial becomes 1 linear variable
- Linear algebra

Some resources

- https://eprint.iacr.org/2023/032.pdf
- https://eprint.iacr.org/2020/1506.pdf
- https://kel.bz/post/lll/
- https://github.com/rkm0959/Inequality_Solving_with_CVP
- https://github.com/jvdsn/crypto-attacks
- https://github.com/kionactf/coppersmith
- https://gist.github.com/RobinJadoul/796857fa33b118c17a4e54ff1b7ccfbe
- https://doi.org/10.1007/3-540-44670-2_12

Get your hands dirty

ImaginaryCTF (round 25)
 A multiplicative knapsack, kinda.
 Author Robin_Jadoul Flag format ictf\{...\}

ImaginaryCTF 2023

$\tan (x)$ is a broken hash function in terms of collision resistance and second preimage resistance. But you surely can't find the preimage of $\tan (f l a g)$, right?

Author maple3142
Flag format $\operatorname{ictf\{ ...\} }$

flagtor

ImaginaryCTF 2023

I threw in a bit of source-given rev, because why not.
> I hate crypto and rev because both are math
Sorry to people who feel like this and even say so in the ictf discord ;)
Author Robin_Jadoul
Flag format ictf\{...\}

ECSC 2023
Champagne for my real friends, real pain for my sham friends.
Author Robin_Jadoul Flag format ECSC\{...\}

Unbalanced

ICC 2022
I want to keep my private key small, but I've heard this is dangerous. I think I've found a way around this though!

Author jack
Flag format ICC $\{\ldots\}$

pbetf 2020

I know there's a famous attack on biased nonces. Then, how about this?
Author rbtree
Flag format pbctf\{...\}
Extra note (try the harder approach, just for fun)

Seed Me

pbctf 2021

I came up with this fun game that only lucky people can win. Do you feel lucky?

Author UnblvR
Flag format pbctf\{...\}

SECCON finals 2022

Recently, I learned that this random number generator is called " $M R G$ ". Author Xornet Flag format SECCON\{...\}

onelinecrypto

SEETF 2023

How to bypass this line?
assert __import__('re').fullmatch(r'SEE\{\w\{23\}\}', flag:=input()) and not int.from_bytes(flag.encode(), 'big') \% 13**37

Author Neobeo
Flag format SEE\{...\}

TSJ CTF 2022

I encrypted the flag and messages by xoring them with a random number generator again. But it should be harder to break this time.

Author maple3142
Flag format TSJ\{...\}

Random Shuffling Algorithm

HITCON CTF 2023

I think you already know what is this challenge about after seeing the challenge name :)

Author maple3142
Flag format hitcon\{...\}

Reality (remake)

<Mostly new>
Based upon the challenge reality from google ctf 2019
Author Robin_Jadoul
Flag format flag\{...\}

