
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Secure Multiparty
Computation, Inside and Out
of the Head

Robin Jadoul

Dissertation presented in partial
fulfilment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

January 2025

Supervisor:
Prof. dr. Nigel Paul Smart

Secure Multiparty Computation, Inside and Out of
the Head

Robin JADOUL

Examination committee:
Em. Prof. dr. ir. Jean-Pierre Celis, chair
Prof. dr. Nigel Paul Smart, supervisor
Prof. dr. ir. Fréderik Vercauteren
Prof. dr. Danny Hughes
Prof. dr. Jeongeun Park

(Norwegian University of
Science and Technology (NTNU))
Prof. dr. Diego de Freitas Aranha

(Aarhus University)

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineer-
ing

January 2025

© 2025 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Robin Jadoul, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Research is not something that happens in isolation. While it sounds like a
cliché, it is a very true saying, even when the effects of a well-known pandemic
could still be felt when starting out doing research. The interaction with all the
great people in and around COSIC over the years has been an absolute pleasure
and a privilege. From coffee and a chat, over coffee and talking cryptography,
to coffee and something sweet because there’s a reason to celebrate (can you
tell there’s been quite a bit of coffee?), the semi-regular boardgame nights, and
the occasional other social events; I have enjoyed them all. Thank you.

More towards the other side of the work-life balance, there are of course more
people to be acknowledged and thanked. First and foremost among them, my
supervisor. Thanks, Nigel, for the inspiration, the guidance, and the occasional
prodding to get things done. This journey would have looked entirely different
without you. Thanks then too, to the rest of my supervisory committee:
Fre Vercauteren and Danny Hughes for the questions and feedback on my
intermediary checkpoints. Extending on this, more thanks to the same people
and yet more: my examination committee. Thank you, Jean-Pierre Celis,
Jeongeun Park and Diego Aranha, for reading this work, and challenging me
with interesting and engaging questions and discussions at the defence. By
extension also my thanks to you, hypothetical future reader, whoever you may
be, for taking the time to read this.

As I claimed that research does not happen in isolation, I should like to
thank all my co-authors as well, for the fruitful and enjoyable collaborations
(ordered alphabetically; as usual, there is no metric I could use that would
make sense): Carsten Baum, Lennart Braun, Barry van Leeuwen, Emmanuela
Orsini, Jeongeun Park, Hilder Pereira, Cyprien de Saint Guilhem, Peter Scholl,
Nigel Smart and Titouan Tanguy. Outside of the purely academic work, there
is always a lot of paperwork to be taken care of as well, which would not go

i

ii PREFACE

quite as smoothly if it weren’t for the people behind the scenes taking care of
the administration and finances. Thanks, Péla, Wim, Anouk and Elsy.

Of course, I would like to thank all friends and family who provided me with
the necessary support along the way. Even if you did not understand what
I was working on or talking about for most of the time, just the opportunity
to try and explain something in an understandable way can help me clear up
my own thoughts often enough. If you were one of the lucky ones who did not
have to sit through one of those attempted explanations, rest assured that the
interaction, the distraction, and your general presence were well appreciated
too.

Finally, as I have done before, I’d like to sincerely extend my thanks to Alice,
Bob, Eve, Peggy, Victor, and the entire rest of that wonderful pantheon of
cryptographic characters (or who would forget all the nameless computational
parties Pi). Your curiosity, your malice and your desires for security, privacy
and all sorts of new cryptographic techniques will always be an inspiration to
me.

Abstract

Cryptographic approaches to privacy-preserving computation problems have
known a long line of research and engineering work to achieve simultaneous
security and performance guarantees. However, most of the effort for arithmetic
circuits has been focused on the setting for large finite fields, causing a disconnect
between the properties provided by the protocols, and those expected by people
more accustomed to “regular” computers. This, in turn, leads to unwanted
overhead when these protocols are applied to programs written for regular
computers, as is often the case with increased adoption by a wider technological
audience.

In this thesis, we aim to investigate and construct efficient and practical
cryptographic protocols for Multiparty Computation (MPC) and Zero-
Knowledge Proofs (ZKP), as well as the intersection and combination of
both settings, over the arithmetic domain conventionally used by computers:
Z2k . This domain further improves the practicality and efficiency by
respectively allowing a more straightforward translation of user programs,
and implementations relying on native arithmetic.

Concretely, we first provide an overview of the necessary mathematical and
cryptographical background concerning the foundations of MPC and ZKPs for
arithmetic circuits. We then present and examine several protocols for both
MPC and ZKP over the rings Z2k — which can be considered to be the native
evaluation domain of a modern binary computer, — sometimes through the
lens of the more general form Zpk additionally covering small and large fields.

Along the way, we also investigate a different performance consideration and
tradeoff in the form of lifting a designated-verifier ZKP into a setting we call
the “distributed-verifier” setting. Here we turn the verifier into a distributed
protocol that guarantees the security properties as long as no sufficiently large

iii

iv ABSTRACT

collaborations between the parties — including the prover — exists. In return,
we gain a ZKP that inherits efficiency from the designated-verifier protocol
while simultaneously becoming, in a certain sense, more publicly verifiable.

Beknopte samenvatting

Cryptografische benaderingen van problemen rond privacy-beschermende
berekeningen kennen een lange lijn aan onderzoeks- en ontwikkelingswerk om
tegelijkertijd garanties te kunnen bieden voor veiligheid en performantie. Voor
het grootste deel van de inspanningen voor aritmetische circuits ligt de focus
echter op grote eindige lichamen. Dit veroorzaakt een belangrijk verschil tussen
de eigenschappen die de protocols aanbieden, en de eigenschappen die iemand
meer gewend aan “gewone” computers zou verwachten. Op zijn beurt leidt dit
tot ongewenste overhead wanneer deze protocols een toepassing vinden voor
programma’s geschreven voor gewone computers, zoals zo vaak gebeurt bij een
toegenomen ingebruikname door een breder technologisch doelpubliek

In deze thesis stellen we tot doel om efficiënte en praktisch toepasbare
cryptografische protocols voor Multiparty Computation (MPC) en Zero-
Knowledge Proofs (ZKP) te onderzoeken en te construeren, samen met het
overlap en de combinatie van beide domeinen, met berekeningen over Z2k . Dit
rekendomein zorgt verder voor verbeteringen in toepasbaarheid en efficiëntie door
respectievelijk een meer directe vertaling van programma’s van gebruikers toe
te laten, en door implementaties in een natuurlijke rekenomgeving te plaatsen.

Concreet voorzien we eerst een overzicht van de noodzakelijke wiskundige en
cryptografische achtergrond met betrekking tot de grondslagen van MPC en
ZKP voor aritmetische circuits. Vervolgens presenteren en onderzoeken we
verscheidene protocols voor zowel MPC als ZKP over de ringen Z2k — die
gezien kunnen worden als het natuurlijke evaluatiedomein van een moderne
binaire computer, — soms door de lens van de meer algemene vorm Zpk die
eveneens kleine en grote lichamen vervat.

Onderweg onderzoeken we ook een andere overweging van performantie en de
afweging ervan in de vorm van een vertaling van een designated-verifier ZKP naar

v

vi BEKNOPTE SAMENVATTING

een context die we de “distributed-verifier” setting noemen. Hier veranderen
we de verifier in een gedistribueerd protocol dat de veiligheidseigenschappen
garandeert zolang er geen afdoend grote samenwerking tussen de partijen —
inclusief de prover — bestaat. In ruil daarvoor krijgen we een ZKP dat de
efficiëntie van het designated-verifier protocol erft en tegelijkertijd, in zekere
zin, meer publiekelijk verifieerbaar wordt.

List of Abbreviations

2PC Secure Two-Party Computation.

AES Advanced Encryption Standard.

DV-ZKPoK Distributed Verifier ZKPoK.

ESP Extended Span Program.

LSSS Linear Secret Sharing Scheme.

MAC Message Authentication Code.

MitH MPC-in-the-Head.

MPC Secure Multiparty Computation.

MPCitH MPC-in-the-Head.

MSP Monotone Span Program.

NIZK Non-Interactive Zero-Knowledge Proof.

ORAM Oblivious RAM.

PKI Public-Key Infrastructure.

PoK Proof of Knowledge.

RAM Random-Access Memory.

vii

viii LIST OF ABBREVIATIONS

RO Random Oracle.

ROM Random Oracle Model.

SNARK Succinct Non-interactive Argument of Knowledge.

SSS Secret Sharing Scheme.

STARK Scalable, Transparent Argument of Knowledge.

UC Universal Composability.

VM Virtual Machine.

ZK Zero-Knowledge.

ZKP Zero-Knowledge Proof.

ZKPoK Zero-Knowledge Proof of Knowledge.

List of Symbols

[s] A secret sharing of the value s

C A circuit

M A MSP or ESP

P A set of parties (for MPC); The prover (for ZKPs)

V The verifier

F A field

Fq The finite field of order q

GR(q, d) The Galois ring of degree d modulo q

λQ The reconstruction vector for a qualified set Q in a linear secret sharing
scheme

C The field of the complex numbers

Q The field of the rationals

R The field of the reals

N The number of parties

OR A random oracle

Rec The reconstruction function of a secret sharing scheme

Share The sharing function of a secret sharing scheme

Z The ring of integers

ix

x LIST OF SYMBOLS

Zn The ring of integers modulo n

p A prime

Pi A party

q A prime power, pk

V (α1, . . . , αt) The Vandermonde matrix over the points (α1, . . . , αt)

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations viii

List of Symbols x

Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 From Engineering to Cryptography 2
1.2 Protocols and Efficiency . 4
1.3 Chapter Overview . 5

2 Rings of the Form Zpk 9
2.1 Finite Fields . 10

2.1.1 Definitions . 10
2.1.2 Constructions . 11

2.2 Finite Rings of the Form Zpk 13
2.2.1 Definitions . 13
2.2.2 Extensions . 14

2.3 Testing Equality . 15
2.3.1 Equality of Polynomials 16
2.3.2 Random Linear Combinations for Sequence Equality . . 19

xi

xii CONTENTS

3 Multiparty Computation from Linear Secret Sharing 23
3.1 Linear Secret Sharing Schemes 24

3.1.1 Access Structures . 25
3.1.2 LSSS for a Given Access Structure 27
3.1.3 Monotone Span Programs 30

3.2 Secure Multiparty Computation (MPC) 32
3.2.1 Representing Computation 33
3.2.2 Flavours of MPC . 35
3.2.3 Cost and Efficiency . 36

3.3 Building MPC from Secret Sharing 37
3.3.1 Passive Security . 38
3.3.2 Security with Abort . 40

4 Zero-Knowledge Proofs 43
4.1 Proof and Arguments . 44

4.1.1 Definitions and Properties 44
4.1.2 Knowledge . 45
4.1.3 Eliminating Interaction 50

4.2 Knowledge of Homomorphism Preimages 51
4.2.1 Proving the Discrete Logarithm 51
4.2.2 Exponentiation is a Homomorphism 52

4.3 Zero-Knowledge Proofs from MPC 53
4.3.1 Proofs for General Computation 53
4.3.2 Building on MPC . 55

5 MPC for Q2 Access Structures over Rings and Fields 59
5.1 Introduction . 62
5.2 Preliminaries . 68

5.2.1 Notation . 68
5.2.2 ℓ-Good Rings and the Schwartz-Zippel Lemma 68
5.2.3 Monotone and Extended Span Programs 69
5.2.4 Linear Secret Sharing Schemes Induced from MSPs and

ESPs . 72
5.2.5 Shamir over Rings, an Example: 74
5.2.6 Basic Multi-Party Computation Protocols 76

5.3 Generating an ESP from an MSP 81
5.4 Opening Values to One Player and to All Players 85

5.4.1 Open to One . 86
5.4.2 Open to All . 88

5.5 Multiplication Check . 92
5.5.1 MultCheck1 . 92
5.5.2 MultCheck′1 . 95
5.5.3 MultCheck2 . 97

CONTENTS xiii

5.5.4 MacCheck . 97
5.5.5 Summary . 100

5.6 Offline Preprocessing Protocols 104
5.6.1 Comparing Actively Secure Offline Protocols 107

5.7 Complete Protocols . 110
5.A Proof of Theorem 5.1 . 117
5.B KRSW Multiplication Costs . 119

5.B.1 Replicated (3, 1) Sharing 122
5.B.2 Replicated (5, 2) Sharing 126
5.B.3 Replicated (10, 4) Sharing 129
5.B.4 Shamir (3, 1) for large p 130
5.B.5 Shamir (5, 2) for large p 132
5.B.6 Shamir (10, 4) for large p 135
5.B.7 Shamir (3, 1) for Z2k . 139
5.B.8 Shamir (5, 2) for Z2k . 142
5.B.9 Shamir (10, 4) for Z2k 148

6 Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs 153
6.1 Introduction . 156

6.1.1 Related Work . 157
6.1.2 Our Contribution . 159
6.1.3 Applications . 161
6.1.4 Techniques . 162

6.2 Preliminaries . 163
6.2.1 Shamir Sharing . 163
6.2.2 Digital Signatures . 164
6.2.3 Zero-knowledge Proofs 165
6.2.4 Schwartz-Zippel Lemma 166
6.2.5 Coin Flipping . 166

6.3 Distributed Verifier Zero-Knowledge Proofs 167
6.3.1 Zero-Knowledge in the Threshold Setting 167
6.3.2 Examples . 169

6.4 Preprocessing for distributed proofs with honest majority t < n/2 173
6.5 Distributed proof with t < n/4 corruptions 181
6.6 Distributed proof with t < n/3 corruptions 187
6.7 Experiments . 194

6.7.1 Results . 195

7 ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k 203
7.1 Introduction . 206

7.1.1 Our Contribution . 208
7.2 Preliminaries . 210

7.2.1 Notation . 210

xiv CONTENTS

7.2.2 Rings . 210
7.2.3 Secret-Sharing Schemes over Rings 212
7.2.4 MPC-in-the-Head via Linear Secret Sharing 214

7.3 Checking Multiplications over Rings 217
7.3.1 Sacrifice Based Check 217
7.3.2 Inner Product Multiplication Check 219
7.3.3 Compressed Multiplication Check 221

7.4 Checking Base Ring Sharings 226
7.5 Protocol Communication Costs 227

7.5.1 Primitive Costs . 228
7.5.2 Protocol Costs . 229
7.5.3 Overall Costs . 230
7.5.4 Concrete Comparison of the Three ΠMult-Check Subpro-

tocols . 230
7.6 Packing . 235

7.6.1 Packing in the Shamir Domain 235
7.6.2 Packing in the Galois Domain 235
7.6.3 Multi-Round Computations 237

7.7 RAM Application . 238
7.7.1 Permutation Check . 238
7.7.2 Bound Check . 239
7.7.3 Array Access Check . 240

8 Conclusion 247

Bibliography 251

Statement on the Use of Generative AI 261

Curriculum 263

List of Figures

5.1 Induced LSSS from a Monotone/Extended Span Program. . . . 73
5.2 The ideal functionality for MPC with Abort over Zpk 77
5.3 Interface for a Cryptographic Hash Function H 78
5.4 The Ideal Functionality for Commitments 78
5.5 The Protocol for Commitments. 79
5.6 Ideal Functionality FAgreeRandom(D) 79
5.7 Ideal Functionality FPRSS(m) 80
5.8 Protocol ΠOpening . 91
5.9 The Protocol MultCheck1 . 93
5.10 The Protocol MultCheck′1 . 96
5.11 The Protocol MultCheck2 . 98
5.12 The Protocol MacCheck . 99
5.13 The Functionality FPRZS . 120
5.14 Ideal Functionality FAgreeRandom′(D,S) 121
5.15 KRSW Protocol ΠConvert converting additive shares to shares in

the LSSS . 122
5.16 Algorithm for computing a “good” ESP 123
5.17 Smart–Wood Protocol ΠConvert converting additive shares to

shares in the LSSS . 124

6.1 Functionality FRand(P,M) . 166
6.2 Functionality FDV−ZK for Distributed-Verifier ZK 170
6.3 Functionality FDV−ZK for Distributed-Verifier ZK, continued . 171
6.4 Functionality F t,n

Prep for preprocessing in the case when t < n/2 174
6.5 Protocol for preprocessing with t < n/2 175
6.6 Protocol for preprocessing with t < n/2 (continued) 180
6.7 Protocol Π4t for t < n/4 . 181
6.8 Protocol Π4t for t < n/4 (continued) 186

xv

xvi LIST OF FIGURES

6.9 Protocol Π3t for t < n/3 (Init) 187
6.10 Protocol Π3t for t < n/3 (Prove) 192
6.11 Protocol Π3t for t < n/3 (Verify) 193
6.12 Timing on the 10-block SHA256 circuit with t = ⌊(n− 1)/4⌋ and

t = ⌊(n−1)/3⌋ respectively. The base field is F27 and for t < n/3
the extension field is F291 . 194

7.1 Generic MPC protocol for circuit verification 215
7.2 The sacrificing check over rings. 218
7.3 The inner product check over rings. 220
7.4 The subroutine for inner product compression 221
7.5 The compressed multiplication check 223
7.6 The check to ensure sharings correspond to values in the base

ring. 226
7.7 Permutation check . 239
7.8 Permutation check for tuples 239
7.9 Bound Check for a batch of sensitive values 240
7.10 Complete checking circuit for random memory accesses 241

List of Tables

5.1 Summary of our five protocol variants. A “heavy” post-processing
phase denotes a phase akin to sacrificing, whereas a “light” post-
processing denotes a phase akin to SPDZ-like MAC checking. A
Passive online phase refers to an online phase using either Maurer
or KRSW multiplication. 66

5.2 Costs of the Base Protocols for a General Access Structures . . 101
5.3 Costs of the Base protocols for Various Access Structures . . . 103
5.4 Costs of the Offline Protocols in number of bits per multiplication,

for various access structures; κ = 128, p ≈ 2128 109
5.5 Costs of the Full Protocols in number of bits per multiplication,

for various access structures; κ = 128, p ≈ 2128 114

6.1 Comparison of Protocols . 169
6.2 Experimental results for running the protocols in Figure 6.7 and

Figure 6.9 on our evaluation circuits 194
6.3 Experimental results for n = 100 verifiers on our evaluation

circuits . 195

7.1 Rings and numbers of primitive operations used by the three
multiplication checking protocols. 227

7.2 Communication costs in bits of the primitive operations. Here
B(·) denotes the number of bits required to encode an element
of the set passed as argument. 228

7.3 Cost comparison for σ = 40, m = 1024 with threshold secret
sharing. 231

7.4 Cost comparison for σ = 40, m = 1024 with additive secret
sharing. 232

xvii

xviii LIST OF TABLES

7.5 Cost comparison for σ = 40, m = 32768 with threshold secret
sharing. 232

7.6 Cost comparison for σ = 40, m = 32768 with additive secret
sharing. 233

7.7 Cost comparison for σ = 128, m = 32768 with threshold secret
sharing. 233

7.8 Cost comparison for σ = 128, m = 32768 with additive secret
sharing. 234

CHAPTER 1

Introduction

Cryptography is a discipline with many different faces. For a kid wanting to
keep their diary a secret, it could be as simple as replacing every letter by the
next one in the alphabet — though this approach is also said to have been
used by Caesar to communicate with his generals — or writing backwards
with mirrored letters. For a film or an advertisement campaign, it could mean
playfully adding some secret, lightly obfuscated information to the background
of a scene to reward the observant viewer and drive engagement. For a company,
it could mean securely storing the recipe for their secret sauce; ensuring its
availability for the employees that need it, but keeping it away from the prying
eyes of industrial espionage.

In general, one could say that the overall goal of cryptography is about managing
“trust” and data. The kid writing in their diary might not trust their younger
sibling to respect their privacy, but is willing to trust the sibling’s lack of
understanding of the code or their laziness to figure it out. When communicating
over the internet, we might not trust the routers in between that are forwarding
all messages, but if we assume or trust that certain mathematical problems are
hard, we are able to construct a secure communication channel. Within that
paradigm, we can then distinguish three major subfields, classified by the usage
of the involved data. The first two will be more familiar to most readers, and
are in fact clearly recognizable in the above examples: “data in transit” and
“data at rest”. Data in transit concerns itself with all kinds of communication
situations, dealing with things like secure transactions on the internet and secure
messaging (e.g. what happens when you send a message on WhatsApp). For
data at rest, we care more about storing, retrieving and updating data, such as
you might encounter when dealing with disk encryption on your phone.1

1In some situations, it may be tempting to think about data at rest as a special case of
data in transit, as you may essentially be sending a message to the “future you”. There are

1

2 INTRODUCTION

The third subfield could be labelled as “data during computation”, and some
topics from this subfield will be the focus of this thesis. The prototypical
example — and indeed one of the problems that started the field of secure
multiparty computation — is Yao’s millionaire problem [Yao82], which considers
two millionaires who wish to determine who among them is the richest, without
revealing their wealth to each other. Later, [BCD+09] showed a first real-world
application of this type of protocol by running a private double auction of
Danish sugar beets with it. While this focus will be more cryptographically and
mathematically inspired, it may prove useful to first consider the engineering
approach to securing data during computation.

1.1 From Engineering to Cryptography

The engineering way to perform private computation relies on Trusted Execution
Environments (TEEs). These are computer chips that have been constructed in
such a way that not even the owner or operator of the chip has the ability to
read or write memory other than in the ways allowed by the currently running
program. Additionally, the manufacturer of the TEE embeds a private signing
key into the hardware that can be used to perform remote attestation, that can
prove to the user both that the TEE is a genuine piece of hardware (and not
simulated in software to give a false sense of security) and that the code running
inside the TEE is what the user expects it to be. All of this functionality
however requires a certain level of trust in the security guarantees offered by
the hardware. In practice, hardware is a complex construction, where micro-
architectural attacks and side channels are discovered frequently enough that this
trust may not be guaranteed. Instead, in this thesis, we investigate protocols that
can manage this trust issue by involving cryptographical hardness assumptions,
collaboration between multiple parties and mathematical techniques. Regarding
the security of the protocols in this thesis, we wish to stress that all building
blocks are either information-theoretical or post-quantum secure primitives.
This means that all protocols we present here can be considered future-proof,
even when considering the hypothetical arrival of cryptographically relevant
quantum computers.

Next, we distinguish a few different functionalities that a TEE could offer, and
briefly discuss the cryptographic alternatives. The cryptographically aware
reader may recognize in these examples that the TEE acts as a straw man for
a trusted third party, or an ideal functionality. In practice, it is worth noting
that cryptographic algorithms allow for more functionality and advantages than
some important differences however, including the need for securely updating the data and
the lack of interactivity between the sender and the receiver.

FROM ENGINEERING TO CRYPTOGRAPHY 3

TEEs are used for in real-world applications, as they can additionally provide
resilience against denial of service attacks, unreliable networks, colluding parties,
and more.

Delegated computation A “client” with low computational power (such as an
IoT device that is constrained by its battery) wishes to perform an expensive
computation on some private inputs and learn the corresponding output. Since
the memory of the TEE cannot be read by the operator, the client can send
encrypted inputs and receive the output similarly encrypted from the TEE.
From a cryptographic perspective, a technique known as Fully Homomorphic
Encryption (FHE) allows exactly this use case, at the cost of an increased
computational cost for the evaluator and increased ciphertext size. We do not
discuss this sort of encryption scheme in any detail in this work, but wish to
make the reader aware of its existence so that they are better equipped to make
informed decisions on the right kind of cryptography to use.

Private computation In a similar vein, multiple computers may each have
some data that they would like to combine and learn some function of all inputs
without any party learning more information about another’s inputs besides
what is revealed from the output. A TEE could act as a trusted third party
that can receive all inputs (each encrypted under a party-specific key), compute
the function, and send the output to each party that is allowed to learn it. A
direct application of FHE does not easily apply in a situation like this, since
the function evaluation requires all data to be encrypted under the same key,
leading to anyone with access to the key being able to decrypt all inputs.2
Instead, we can let all parties jointly execute a Secure Multiparty Computation
(MPC) protocol, that will ensure data privacy as long as an insufficient amount
of parties collaborates to break it. The exact amount of parties needed to break
privacy depends strongly on the specific protocol being used, but is commonly
a third, half or all of the parties.

Verifiable computation The above techniques by themselves can ensure that
inputs remain private, but they may not yet guarantee that the computed
output itself was computed honestly. The TEE chip can avoid this integrity
issue through the use of remote attestation that confirms the code being executed
is the code requested by the client. The cryptographic approach to verifiable

2There do however exist so-called Multi-key FHE schemes that, at noticeable increase in
computational cost, enable joint computation on ciphertexts encrypted by different parties,
without requiring communication between them. These schemes can even be used in some
cases as a building block for MPC protocols.

4 INTRODUCTION

computation relies on Zero-Knowledge Proofs (ZKPs) that can attest to the
output being correctly calculated from the inputs. ZKPs can even prove the
correctness of some secret data without revealing it. A common example would
be proving knowledge of an encryption key that corresponds to a known pair of
plaintext and ciphertext.3 This turns out to be a very powerful functionality
that finds much use in privacy-preserving applications and as a building block
for even more elaborate cryptographic protocols.

1.2 Protocols and Efficiency

While the transition from hardware-based privacy to cryptography manages
to alleviate our worries about the security of TEEs and bases trust instead in
well-studied mathematics, it also comes with a significant downside. Hardware
is fast; software and cryptography, less so.

Making use of cryptographic protocols often means introducing additional
communication between different parties. On top of that, many mathematicians

— and hence the protocols they design — usually work with so-called finite
fields.4 Modern hardware on the other hand, generally works modulo some
power of two (so the ring Z2k), which is not natively compatible with the
structure of a finite field. That means that “normal” programs — i.e. those
written for contemporary hardware — need to be emulated inside the finite
field structure to recover the original semantics, whereas a TEE-based approach
would naturally admit the same structure as the “insecure” hardware. This
leads to one major contribution of this thesis: the study of MPC and ZKP
protocols over the ring structure Z2k favoured by hardware.

Cryptographic protocols may also come in different varieties. Sometimes, a
protocol is designed to perform exactly one task, and do it as optimized as
possible. For instance one could attempt to design a protocol that can perform a
single private comparison as efficiently as possible, so that the millionaires from
before can start spending their money on drinks faster, rather than wasting time
figuring out who exactly should pay for it. On the other hand, it is also possible
to build a protocol that can securely compute any function. This approach may
not be the fastest possible in every single situation, but it may be the most
cost-effective as it requires no extra time to first design the protocol. In this
thesis, we focus on protocols of the latter kind, in the hope that we can provide

3This functionality could also be achieved in a TEE (standing in for a trusted third party)
by framing it as a private computation problem between two parties.

4This is of course not just because they like being quirky, finite fields are a common
occurrence and well studied within cryptography, as they provide a lot of nice structure and
properties to work with.

CHAPTER OVERVIEW 5

both fast and generic protocols, as well as provide inspiration and techniques
that enable faster specialized protocols when the need arises.

1.3 Chapter Overview

The remainder of this thesis can be subdivided into two different kinds of chapter.
First are some preliminary chapters that aim to introduce, in an intuitive and
understandable manner, the main concepts and building blocks required for the
later chapters. In turn, those later chapters correspond to papers published
and presented at conferences.5 As is customary within the field, and due to
the impossibility of disentangling contributions out of fruitful discussions and
collaborations, the authors on the papers are listed in alphabetical order.6

Chapter 2: Rings of the Form Z2k In this chapter, we define and explore the
mathematical objects of finite fields and rings, so that we can properly quantify
the difference between the mathematician’s and the computer’s approach
discussed earlier in the introduction. We shall see that, while there are differences
of significance, there are also useful parallels to draw between the two, not
in the least the constructions of Galois fields and rings. Afterwards, we also
introduce some methods for probabilistic equality testing of sequences over rings
and fields, which will prove to be important building blocks for many protocols
later on.

Chapter 3: Multiparty Computation from Linear Secret Sharing In this
chapter, we first introduce and formalize the concept of secret sharing as a way to
distribute private data across multiple parties without revealing any information
about it. A specific kind of secret sharing scheme will then give rise to the
computation of linear functions over shared secrets. Finally, we can augment
these linear secret sharing schemes into fully-fledged MPC protocols through the
design of multiplication protocols. The chapter includes all essential background
knowledge on access structures, security and performance to understand the
contributions in later chapters.

Chapter 4: Zero-Knowledge Proofs In this final preliminary chapter, we
introduce the concept of Zero-Knowledge Proofs, which have — besides being

5Rather, the chapters correspond to the full version of those papers.
6For a more elaborate statement on this matter, the reader may refer to https://www.ams.

org/profession/leaders/CultureStatement04.pdf.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

6 INTRODUCTION

an interesting primitive in their own right — several useful applications in areas
such as verifiable computation and the design of signature schemes. The general
goal of a ZKP is to convince a verifier of the veracity of a certain statement,
without revealing any further information (or “knowledge”). We discuss some
early protocols for specialized statements as a means to familiarize the reader
with the definitions and the material, before moving on to constructions of
ZKPs based on MPC protocols, which are essential for the understanding of
later chapters.

Chapter 5: MPC for Q2 Access Structures over Rings and Fields This is
the first chapter based on a published paper, namely [JSv22]. In it, we examine
and compare several MPC protocols for so-called Q2 access structures. A Q2
access structure can be considered as a generalization of the honest-majority
setting, in which at least half the participating parties are assumed to act
honestly. Our protocol designs work for both small and large finite fields as
well as the rings Zpk , which importantly also covers the setting of interest Z2k .
Our evaluation of the protocols takes into account the expected communication
costs per multiplication gate, depending on the access structure, and the round
complexity depending on the multiplicative depth of the computation. We
also present an open source programmatic cost estimation tool and framework
for the estimation of communication costs for MPC protocols. My personal
contributions to this paper are centred around the design of the different
protocols and the evaluation thereof, including the case analysis of several
specific secret sharing schemes and the development of the cost estimator.

Chapter 6: Feta: Efficient Threshold Designated-Verifier Zero-Knowledge
Proofs This paper [BJO+22] explores the intersection between MPC and
ZKPs. In particular, it seeks to find a tradeoff between public verifiability of
the proof system and the computational cost for the prover. It achieves this by
turning a designated-verifier proof system into a distributed-verifier one, where
the proof is efficiently verified by a set of parties executing an MPC protocol.
We present concretely efficient protocols in the threshold setting, alongside
an implementation and performance analysis. I was strongly involved with
the protocol design and responsible for the full implementation of our proof
of concept and the experiments. Being on this intersection between protocol
design and implementation allowed me to find and apply improvements across
this boundary, by taking inspiration from what was problematic on one side to
improve the other side.

CHAPTER OVERVIEW 7

Chapter 7: ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k

In this paper [BdSGJ+24], we once again turn our attention towards the
“computer” structure Z2k . We build efficient Zero-Knowledge protocols for
statements over this ring based on the MPC-in-the-Head paradigm, which can
transform MPC protocols into proof systems. Our protocols make use of the
structure afforded by Galois rings and admit different underlying secret sharing
schemes and access structures. Within our protocols, we describe a method
to use and verify (oblivious) memory accesses as well as two orthogonal ways
to efficiently prove multiple instances of the same statement in parallel. For
our resulting protocols, we examine and compare the resulting communication
costs or proof sizes. My contribution was focussed on the design and integration
of the various subprotocols (multiplication and ring checks) together with the
introduction of the packing in the Galois domain.

CHAPTER 2

Rings of the Form Zpk

In this chapter, we first restate some mathematical definitions regarding rings
and fields, as well as the construction of Galois fields. We then have a closer look
at rings of the form Zpk , together with the issues introduced by the presence of
zero divisors and how to deal with them. In doing so, we will work with Galois
Rings, which follow a parallel construction to that of Galois fields, building
upon Zpk instead of Fp.

2.1 Finite Fields . 10

2.1.1 Definitions . 10

2.1.2 Constructions . 11

2.2 Finite Rings of the Form Zpk . 13

2.2.1 Definitions . 13

2.2.2 Extensions . 14

2.3 Testing Equality . 15

2.3.1 Equality of Polynomials . 16

2.3.2 Random Linear Combinations for Sequence Equality 19

9

10 RINGS OF THE FORM ZP K

2.1 Finite Fields

In order to calculate arithmetic operations and perform computations, it is useful
to first identify which operations can be somehow considered to be fundamental.
For those operations, we can then determine which properties, in particular
those we know from working with the “everyday numbers”, we want to keep
and build an abstract mathematical definition around. With the definition, we
can then identify other mathematical objects that possess the same structure.
After all, computer memory is finite, and we cannot — nor do we really want to,
most of the time — deal with numbers that grow excessively large or numbers
that require exceedingly large precision.1

2.1.1 Definitions

Taking inspiration from the real numbers, a first choice for addition and
multiplication as mathematical operations becomes natural. For each of these,
we want the usual properties to hold, being commutativity, associativity and
the presence of a neutral element: respectively zero and one, which should be
distinct. Additionally, to ensure proper interaction between these two operations,
we require multiplication to distribute over addition. Finally, each of the two
operations must be invertible. That is, for every element there is an element
such that they add to the zero and an element such that they multiply to one.
The only exception to this is zero: no inverse element for multiplication can or
should exist.

Definition 2.1: Field

A field F is a tuple (F,+, ·), where F is a set and +, · are binary operations
F × F → F , such that:

(a) + and · are associative: a+ (b+ c) = (a+ b) + c = a+ b+ c and
a · (b · c) = (a · b) · c = a · b · c

(b) + and · are commutative: a+ b = b+ a and a · b = b · a

(c) There are two distinct elements 0 ̸= 1 in F such that a+0 = a·1 = a

(d) Addition has an inverse: ∀a ∈ F,∃(−a) : a+ (−a) = 0

(e) Multiplication has an inverse: ∀a ̸= 0 ∈ F,∃(a−1) : a · (a−1) = 1

1You could compare this to how we can calculate an arbitrary amount of digits for the
number π ∈ R, while in practice, using even just the number 3 as an approximation will often
already give useful results.

FINITE FIELDS 11

(f) Multiplication distributes over addition: a · (b+ c) = a · b+ a · c

Since we often care about the relations between mathematical objects, it can be
interesting to clearly define and distinguish maps between fields. In particular
maps that ensure the properties of the fields are fully preserved are of interest,
which we call homomorphisms. As we shall discuss later, it is sometimes
possible to find a copy of one field inside another, and this embedding can be
made explicit by describing the homomorphism that takes any element of the
contained field into the containing field.

Definition 2.2: Homomorphism of fields

A homomorphism (of fields) is a structure-preserving map from one field
F1 = (F1,+, ·) to another F2 = (F2,⊕,⊙). It is a function φ : F1 → F2,
such that φ(11) = 12, φ(a+ b) = φ(a)⊕ φ(b) and φ(a · b) = φ(a)⊙ φ(b).

If a homomorphism is invertible, we call it an isomorphism.

2.1.2 Constructions

From the above definition 2.1, it is easy to verify that our main sources of
inspiration for the definition all satisfy the required properties: the real numbers
R, the complex numbers C and the rational numbers Q all form fields. Observe
that the integers Z fail to be a field, as condition (e) is not satisfied for any
integer other than 1 and −1.

Recall now that our goal in abstracting over these structures was to find fields
that could efficiently be represented by a computer, without needing unbounded
memory to represent any single field element. Hence, we want to find some
finite mathematical structure that satisfies the field axioms; a finite field.

It is a known result that all finite fields have a number of elements that is equal
to a prime power, and that additionally only one finite field exists for each such
cardinality.2 Moreover, concrete instantiations and constructions of all finite
fields are known. We now describe these in two stages. First we describe the
finite fields of prime size, and then extend upon these to build finite fields with
a prime power size.

2Of course, multiple representations of each field may exist, so alternatively one can state
that all fields of a given size are isomorphic to each other.

12 RINGS OF THE FORM ZP K

To obtain a field of prime size, it suffices to look at the integers modulo a prime
p: Zp (also written Fp when talking about the structure as being a field). The
cardinality (and finiteness) of the structure can be easily verified, as well as
associativity, commutativity and distributivity. As neutral elements of addition
and multiplication, 0 and 1 play their usual role. The additive inverse of an
element a is −a or equivalently p−a, since a+ (p−a) ≡ 0 (mod p). To find the
multiplicative inverse of an element a, we can refer to Bézout’s identity, which
tells us that for any element coprime to p — so modulo p, any non-zero element

— we can write x · a+ y · p = 1 for some integers x and y, and consequently that
x · a ≡ 1 (mod p) and as such a−1 = x.

This construction does however not generalize to any other, non-prime moduli.
As a counterexample, it is sufficient to look for the multiplicative inverse of 3 in
Z6 or Z9 = Z32 . As respectively 3 · 2 ≡ 0 and 3 · 3 ≡ 0, such an element cannot
exist. This means that to build up fields of prime power order, we will need to
find a different construction.

One way in which we can construct an object of the right cardinality pk is
to take k copies of Fp in a tuple. Here, a lawful addition can be defined
as the componentwise addition, but unfortunately the construction cannot
properly support multiplication. We can however build upon this approach
and add some extra structure. Rather than letting the copies of Fp be entirely
independent, we make them the coefficients of a polynomial of degree k − 1.
Addition is still defined correspondingly, but while multiplication can be defined
and no longer acts purely componentwise, the multiplication of two degree
k − 1 polynomials will have a degree that is too large. Hence, to reduce the
degree of the resulting polynomial, we introduce the rule that we may write
Xk = P (X) where degP ≤ k − 1. As it turns out, when the associated
polynomial Q(X) = Xk − P (X) is irreducible (over Fp), the resulting structure
forms a field. An equivalent construction of this field is to let ζ be a root of
Q(X) and define Fpk = Fp[ζ]. This construction is known as a Galois field,
named after the mathematician Évariste Galois. As an interesting additional
note, any base field can be extended in a similar way. For instance by taking
an extension of F22 = F2[ζ] with Q(X) = X2 + X + (ζ + 1), one constructs
an alternative representation of the field F24 . From this, one can additionally
conclude that a homomorphism from any Fpk to Fpm exists whenever k is a
divisor of m.

FINITE RINGS OF THE FORM ZP K 13

2.2 Finite Rings of the Form Zpk

Our initial motivation to look at finite fields was to enable ourselves to implement
everything in bounded storage on a computer. Computers, however, generally
work over bits and bytes. While a byte can be used to represent an element of
F28 for instance, that is not generally how arithmetic is performed, as suddenly
addition is the same as a bitwise XOR operation, and multiplication becomes
entirely disjoint from most forms of intuition a programmer may have. Instead,
it is more accurate to consider computers as performing arithmetic modulo 2k,
for some values of k, most commonly 32 and 64.3 However, as we previously
established, Z2k does not form a field for any k > 1. In particular, no even
element of Z2k is invertible (see condition (e) of definition 2.1). Related to that
fact, we observe that all even elements are so-called zero divisors.

Even though this structure is not as well-behaved as a field, we will still want
to be able to work with them. In particular, several cryptographic protocols
that deal with computation — refer also to the next chapters — will want to
have some form of compatibility with Z264 in order to emulate how a “normal”
computer operates, and how most programmers think about computation. This
compatibility is usually achieved via simulation by using only elements in some
other field. While this approach is functional and correct, it also incurs an extra
computational overhead that we would like to avoid by constructing protocols
that work natively over this structure, despite the extra difficulties. Therefore,
to be able to talk about these sorts of structures and analyse their properties, we
again define an abstract mathematical structure that encompass the important
aspects: a (finite) commutative ring.

2.2.1 Definitions

Rather than directing our attention to purely the structure of Z2k , we consider
the slight generalization to Zpk , for some prime p and integer k > 1. For most
cryptographic applications, we end up working in one of two situations. Either
we take full advantage of the properties of fields and work in Fp, or we work in
Zpk for some small p — very often p = 2 — with a moderately sized k.

Definition 2.3: Commutative ring

A commutative ring R is a tuple (S,+, ·), such that it satisfies all axioms
of definition 2.1, other than (e). Sometimes the requirement that 0 ̸= 1

3Note however that this does not cover bitwise operations.

14 RINGS OF THE FORM ZP K

is also omitted.

Observe hence that every field is automatically a commutative ring, and all Zpk

are commutative rings. Furthermore, whereas Z does not form a field, it can be
verified that it is a commutative ring.

Mirroring the structure-preserving maps we defined for fields, we can analogously
define homomorphisms and isomorphisms for rings too.

Definition 2.4: Homomorphism of (commutative) rings

A homomorphism (of commutative rings) is a structure-preserving map
from one commutative ring R1 = (S1,+, ·) to another R2 = (S2,⊕,⊙).
It is a function φ : R1 → R2, such that φ(11) = 12, φ(a+b) = φ(a)⊕φ(b)
and φ(a · b) = φ(a)⊙ φ(b).

We already alluded to even numbers in Z2k being able to multiply together to
zero. For this property, we can also provide a full definition.

Definition 2.5: Zero divisor

An element a ∈ R in a commutative ring R is a zero divisor when an
element b ̸= 0 ∈ R exists, such that a · b = 0.

It is easy to see that any element divisible by p is a zero divisor in Zpk , as
multiplying by pk−1 will always result in a multiple of pk, which is congruent
to zero in the ring. Conversely, we can see by Bézout’s identity that all other
elements are invertible and hence not a zero divisor. An invertible element
a ∈ R is also called a unit. A unit cannot be a zero divisor, but lacking an
inverse element does not automatically make for a zero divisor. Consider 2 ∈ Z
as an example of a number that is not a unit — after all, 2−1 does not exist in
Z — but is not a zero divisor.

2.2.2 Extensions

Just like we built larger fields starting from a field, we can build larger
commutative rings starting from a commutative ring. We will look at two
concrete ways of achieving this, the respective utility of each method becoming
clear in the upcoming section (2.3) on probabilistic testing of the equality
of sequences over rings and fields. First, we mirror the construction of field
extensions to arrive at Galois rings. Afterwards, we modify Zpk directly by

TESTING EQUALITY 15

adding extra “digits” to arrive at Zpk+s . Both approaches can also be further
combined, leading to a clean combination of their respective properties. We do
hence not have to elaborate further on this composition after discussing the
individual approaches.

Similar to how we constructed Galois fields, we can take polynomials of degree
d − 1 over Zpk modulo a monic irreducible polynomial Q(X) to construct a
Galois ring GR(pk, d). This has the same effect as before, where it enables
us to rewrite any term with a coefficient greater than d by substituting Xd =
P (X) = Xd − Q(X). The values in Zpk form a subset of those in GR(pk, d),
where the arithmetic operations between the two are compatible, and so we call
Zpk a subring of GR(pk, d). Consequently, there exists a trivial homomorphism
mapping Zpk onto GR(pk, d).

The other way in which we can make our rings bigger is by adding extra “digits”.
That is, we work in Zpk+s for some s > 0 to compute or ensure properties of
Zpk .4 The reason we can do this and retain correct results over Zpk is that the
“truncation” operation — that is, we cut off the s extra digits we added — is a
proper ring homomorphism mapping Zpk+s → Zpk .

For any homomorphism φ : Zpk → R, we can derive the related homomorphism
ψ : GR(pk, d)→ R[X]/⟨φ(f)⟩, by applying φ componentwise. As long as the
defining polynomial f(X) of GR(pk, d) is irreducible over R, we could write —
with some abuse of notation — ψ : GR(pk, d)→ GR(R, d). The utility of this
becomes apparent when we now consider this in the context of the truncation
homomorphism: the homomorphism trunck : Zpk+s → Zpk gives us a related
homomorphism trunc′k : GR(pk+s, d) → GR(pk, d). For the specific case of
trunc′1, this means that the reduction of GR(pk, d) modulo p is equivalent to
the finite field Fpd .

2.3 Testing Equality

Like we hinted at earlier, in many cases, we want to devise ways in which
to compare sequences of values over some ring or field to each other,
without necessarily comparing every element of one sequence directly with
the corresponding element in the other. A common reason to do this would for
example be a situation where multiple parties have some part of the values —
a share of the secret, as will be further explained in chapter 3 — on which they
can perform linear operations, but no comparisons. In such a situation, the
actual comparison would require communication between the parties, which is

4We sometimes call this a p-adic extension, due to its apparent similarity to truncations
of the p-adic integers.

16 RINGS OF THE FORM ZP K

often costly. Instead, the parties will first want to compress the two sequences
into some shorter form, often a single element, by making use of some random
compression. If the results are equal, we will then want to have only a small
probability that the initial sequences were in fact not equal. Such small
probabilities can then be further boosted through standard application of
repetition to be entirely negligible.

In this section, we examine two such compression techniques. The first one will
be based on polynomial evaluation, while the second one will deal with random
linear combinations of the sequence elements.

2.3.1 Equality of Polynomials

We first recall that a polynomial f(X) ∈ R[X] with coefficients taken from
some ring R can be written as f(X) = f0 + f1 · X + f2 · X2 + · · · + fd · Xd,
where we call d the degree of f , deg f . When interpreted as a function, we can
look at f as the function f : R′ → R′, where we would commonly take R′ = R,
but any ring such that R is a subring of R′ is acceptable.

To represent a sequence (x1, . . . , xn) ∈ Rn as a polynomial in R[X], we have two
common approaches. Both approaches allow computing the polynomial with
only linear operations, so either fits the context we sketched above. For the first
case, we can simply take each element as a coefficient of the polynomial, and
end up with the degree n− 1 polynomial f(X) = x1 + x2 ·X + · · ·+ xn ·Xn−1.
In the other case, we can embed the sequence elements as evaluations of the
polynomial, such that f(α1) = x1, f(α2) = x2, . . . for some n fixed, distinct
elements αi. This process of computing a polynomial given a set of evaluations
is known as polynomial interpolation.

In order to see why interpolation is possible using only linear operations over
the values xi, we first describe how to evaluate a polynomial at multiple values
with the Vandermonde matrix. If you fix a constant value α ∈ R and evaluate
f(α), it is clear that all powers of α are also constant, and this evaluation can
be represented as a linear combination of the coefficients of the polynomial:
f0 + α · f1 + · · · + αd · fd. As such, when we fix d + 1 distinct values αi and
consider the evaluation of f in each of these points, we can write this as the
matrix-vector product

f(α1)
f(α2)

...
f(αd+1)

 =

α0

1 α1
1 α2

1 · · · αd
1

α0
2 α1

2 α2
2 · · · αd

2
...

...
...

α0
d+1 α2

d+1 α2
d+1 · · · αd

d+1

 ·

f0
f1
...
fd

 .

TESTING EQUALITY 17

This matrix is a constant depending solely on our choices for the evaluation
points αi, and is known as the Vandermonde matrix V (α1, . . . , αd+1).

It is known that the Vandermonde matrix has an inverse when its evaluation
points αi form an exceptional sequence. From there, it is enough to observe that
multiplication by the inverse of the Vandermonde matrix results in a polynomial
that evaluates to the given values at these points.

Definition 2.6: Exceptional Sequence

An exceptional sequence (of length n) in a commutative ring R is a
sequence of values (α1, . . . , αn), such that for all pairs αi, αj (for i ̸= j),
the value αi − αj has an inverse in R.

For a field, any sequence of n distinct elements is automatically an exceptional
sequence, and hence interpolation is possible over any field that is sufficiently
large to contain n elements. In a ring, this is unfortunately no longer a guarantee.
Indeed, for the ring Zpk , the maximal length of an exceptional sequence is only
p, which is particularly bad for some situations of interest like Z264 . For the
Galois rings GR(pk, d), the maximal length of an exceptional sequence is pd,
which we can achieve for example by choosing representatives of the field Fpd .
This can be formalized with the following lemma.

Lemma 2.1

The Galois ring R = GR(pk, d) contains a maximal exceptional sequence
of length pd.

Proof.
Existence Consider the reduction of R modulo p, i.e. Fpd . Since this is a
field, it is an exceptional sequence of length pd. Any choice of representatives
of this field in R will result in an exceptional sequence of the same length, since
any element of R is invertible when its reduction modulo p is.

Maximality Assume for the purposes of contradiction an exceptional
sequence of length n > pd. Then two elements, say α, β ∈ R, will have the same
reduction modulo p,

α ≡ β (mod p)⇒ α− β ≡ 0 (mod p).

Since their difference has no inverse in Fpd , no inverse can exist in R either.

Before we return to our goal of testing the equality of two polynomials, we
recall one more fact about polynomials over fields.

18 RINGS OF THE FORM ZP K

Lemma 2.2

A non-constant-zero polynomial f of degree deg f = d, over a field, has
at most d roots.

Proof. Assume that we have d+ 1 distinct roots (z1, z2. . . . , zd+1). Then we can
interpolate f by computing (V (z1, z2, . . . , zd+1))−1 · 0 = 0, and arrive at the
contradiction that f is the zero polynomial.

Now we are ready to state a result, known as the Schwartz-Zippel lemma, over
fields, that will give us a bound on the probability of two polynomials being
equal when they evaluate to the same value at a randomly chosen point.5

Lemma 2.3: Schwartz-Zippel for fields

Let f ≠ g be polynomials over a field F of degree at most d. Let r ∈ F
be uniformly random. Then

Pr
r←F

[f(r) = g(r)] ≤ d

|F|
.

Proof. Consider the polynomial h = f − g ̸= 0. Since neither f nor g has any
coefficients of degree greater than d, deg h ≤ d. When f(r) = g(r), r is a root
of h, of which we know at most d exist, by lemma 2.2. Since r was uniformly
random over F, the probability of finding a root of h is hence at most d

|F| .

When widening our view to the rings we’ve been considering in this chapter,
the proof for lemma 2.2 fails because there may be collections of roots over
which we cannot interpolate to the zero polynomial. Indeed, for an arbitrary
collection of evaluation points, it may not be possible to interpolate at all. An
intuitive reason to see why we may have many more roots for a polynomial over
e.g. Zpk is to consider an evaluation point α = α′ · p ̸= 0 and the polynomial
f(X) = pk−1 ·X. Clearly, α · pk−1 is zero by construction, and hence f(α) = 0.
There are however pk−1 possible choices for α′, which for non-trivial k clearly
exceeds the single possible root we’d have over a field.

5The probability of the polynomials being equal when they evaluate to different values is,
of course, zero.

TESTING EQUALITY 19

Lemma 2.4: Schwartz-Zippel for rings

Let f ̸= g by polynomials over a ring R with an exceptional sequence S.
Let r ∈ S be uniformly random. Then

Pr
r←S

[f(r) = g(r)] ≤ d

|S|
.

This lemma can be seen to be a generalization of the case for fields. Its proof is
analogous to the one for lemma 2.3, so we do not repeat it here.

In practice, we can see that the probability of incorrectly determining that two
different polynomials f and g are identical over GR(pk, d) is entirely independent
of k, and hence that larger k makes elements larger without noticeable advantage
towards equality testing. Hence, we usually try to avoid large p-adic extensions
when applying Schwartz-Zippel equality tests.

A final application of testing polynomial equality that should be noted is
concerned with testing equality of (multi)sets. The goal here is to construct a
polynomial that can represent a set of values without caring about their order.
Luckily, the roots of a polynomial form a set, so if we construct a polynomial
f(X) =

∏
i(X − xi) that has exclusively our elements as roots, we can achieve

this goal. It should be noted, however, that this polynomial cannot be computed
by exclusively linear operations.

2.3.2 Random Linear Combinations for Sequence Equality

The second common method for sequence equality testing we discuss will not
introduce extra structure to the sequence. We can get some first intuition by
starting with a Schwartz-Zippel test, and then removing dependence between the
randomness we see. Consider a polynomial f(X) with the sequence’s elements
as coefficients, and an evaluation of that polynomial in a random value r:

f(r) = r0 · x1 + r1 · x2 + r2 · x3 + · · ·+ rn−1 · xn.

With an appropriate shift in viewpoint, this is simply a linear combination
of the sequence elements with some random values ri that happen to not be
independent. If we replace all ri with independent values ri instead, we can
analyse the resulting probability of compressing two distinct sequences to an
identical value. Equivalently, and to simplify the analysis, we can look at
the equality of two sequences (x1, . . . , xn) and (y1, . . . , yn) as having all of
(x1 − y1, . . . , xn − yn) equal to zero. In a field, we then get the following result.

20 RINGS OF THE FORM ZP K

Lemma 2.5: Random linear combinations for fields

Let (x1, x2, . . . , xn) ∈ Fn, with at least one xi ̸= 0. With (r1, r2, . . . , rn)
uniformly random over Fn, the probability

Pr
r←Fn

[r1 · x1 + r2 · x2 + · · ·+ rn · xn = 0] ≤ 1
|F|
.

Proof. Let i be an index such that xi ̸= 0. Then we can write the condition for
the linear combination to be zero as

ri = −
∑

j ̸=i rj · xj

xi
,

where the inverse of xi exists due to xi ̸= 0. Since ri is uniformly random over
F, the probability of the right-hand size being equal to ri is exactly 1

|F| .

When considering this lemma over rings instead, we run into the problem that
any non-zero xi may not be invertible. Instead, we can work over a p-adic
extension by s bits instead, working over Zpk+s , while only guaranteeing that
the lower k digits are zero, and allowing the upper s digits to be different. This
approach is entirely compatible with Galois extensions as well, working over
GR(pk+s, d), which in turn makes the space to sample randomness from larger.

Lemma 2.6: Random linear combinations for Galois rings

Let (x1, x2, . . . , x
n) ∈ GR(pk+s, d)n, with at least one xi ̸≡ 0

(mod pk). With (r1, r2, . . . , rn) uniformly random over GR(ps+1, d)n,
the probability

Pr
r←Fn

[r1 · x1 + r2 · x2 + · · ·+ rn · xn = 0] ≤ 1
pd·(s+1) .

Proof. Let i be an index such that xi ̸≡ 0 (mod pk), and w < k maximal such
that pw divides xi. Then we can write the condition for the linear combination
to be zero as

ri ≡ −
∑

j ̸=i rj · xj

pw
·
(
xi

pw

)−1
(mod pk+s−w),

where the inverse now exists thanks to the maximality of w. Since ri is uniformly
random and k + s−w ≥ s+ 1, the probability becomes exactly as claimed.

TESTING EQUALITY 21

We can observe here that only extending to a Galois ring results in a slightly
better probability, by the disappearance of the factor n in the numerator, as
compared to the Schwartz-Zippel check. The extension to a Galois ring is
however far more expensive in terms of the amount of data needed to represent
a single element, when compared to the p-adic extension. Hence, extending
p-adically can provide more value here, in contrast to the situation when dealing
with polynomials.

CHAPTER 3

Multiparty Computation from
Linear Secret Sharing

In this chapter, we first describe secret sharing: a way to distribute or share
information with multiple people such that no single person can gain any further
knowledge about it. We then cover a few general methods in which multiple
people can come together to jointly perform private computation that does not
reveal any person’s inputs to another. Finally, we describe ways in which such
private computation can be instantiated based on secret sharing.

3.1 Linear Secret Sharing Schemes . 24

3.1.1 Access Structures . 25

3.1.2 LSSS for a Given Access Structure 27

3.1.3 Monotone Span Programs 30

3.2 Secure Multiparty Computation (MPC) 32

3.2.1 Representing Computation 33

3.2.2 Flavours of MPC . 35

3.2.3 Cost and Efficiency . 36

3.3 Building MPC from Secret Sharing 37

3.3.1 Passive Security . 38

3.3.2 Security with Abort . 40

23

24 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

3.1 Linear Secret Sharing Schemes

The first step to take before going directly into secure distributed computations,
is to consider how the data for these computations will be represented among
all participating parties. Since our goal is to avoid any single party — and as
we shall discuss, this even extends to entire sets of parties — learning anything
about this data in the intermediate steps, the information should be spread
across all participants, in such a way that everyone can contribute some part,
that is meaningless on its own. To tease some notation without fully defining
it just yet, we shall write a sharing of a secret value s as [s], which you could
interpret visually as putting s in a (distributed) box.

In order to do so, we discuss Secret Sharing Schemes in this section, and in
particular a specific kind known as Linear Secret Sharing Schemes (LSSS). We
shall define these in an abstract sense, based on the Access Structures they
allow. That is, which sets of parties are allowed or disallowed to learn the
shared secret. From there, we build a concrete representation of LSSS in the
form of Monotone Span Programs (MSP), which will enable us to use tools from
linear algebra to manipulate the associated LSSS.

Consider the following example. We will come back to this setting a few times
in this chapter to further clarify newly introduced concepts.

Example 3.1

The queen of a far-off realm wishes to ensure the future wealth of the
kingdom, and has secured the crown jewels along with a large amount
of gold in a vault. This vault is protected behind several traps and a
secret code, which, if entered incorrectly, will result in the entire treasure
being destroyed on the spot. She is currently the only person to know
the code, but wants to make sure that all wealth will not be lost in the
event of her death, so she looks for a way to share the code between her
three children (the crown prince C, princess Alice A and prince Bob B)
and the castle-keeper K. Since the treasure should only be accessed after
her death, she wants this sharing to be in such a way that C needs at
least one other person with him to open the vault, or A, B, and K have to
come together (just in case something happens to the crown prince too).

LINEAR SECRET SHARING SCHEMES 25

3.1.1 Access Structures

Two of the main characteristic properties we want from secret sharings are
privacy, certain sets of shares do not reveal any information about the shared
secret, and being able to reconstruct, where at least some set of shares can
recover the shared secret by working together. We can formalize the sets
corresponding to these properties as respectively unqualified sets and qualified
sets.

Observe that simply based on availability of information, if a set S is a superset
of some qualified set Q, S is qualified too, and similarly any subset T of
an unqualified set U must be unqualified. For qualified sets, we call this
monotonically increasing, and for unqualified sets monotonically decreasing.

Definition 3.1: Monotonicity

Let S be a set and Θ ∈ 2S . We call Θ monotonically increasing when
T ∈ Θ ∧ T ⊆ R ⊆ S =⇒ R ∈ Θ. We call Θ monotonically decreasing
when T ∈ Θ ∧R ⊆ T ⊆ S =⇒ R ∈ Θ.
Since the subset relation defines a partial order, we can identify minimal
elements of a monotonically increasing set and maxima of a monotonically
decreasing set. In this context, we refer to those as minimally qualified
sets and maximally unqualified sets respectively.

Definition 3.2: Access Structure

Let P be a set of parties (or equivalently shares). When Γ,∆ ∈ 2P ,
Γ ∩∆ = ∅, Γ monotonically increasing, ∆ monotonically decreasing, we
call (Γ,∆) an Access Structure (for P). The elements of Γ are called
qualified sets, while the elements of ∆ are called unqualified sets.

For ease of use and notation, we will always assume so-called complete access
structures. That is, every possible set of shares is in exactly one of Γ and ∆.
Any access structure that is not complete can be turned into a complete access
structure by arbitrarily assigning every ambiguous set of shares to either of the
two sets.

Example 3.2

Recall the setting from example 3.1. We can denote the set of parties
as P = {C,K,A,B}, and interpret the queen’s wishes as requiring
the qualified sets to be Γ ⊇ {{C,K}, {C,A}, {C,B}, {K,A,B}}, i.e.

26 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

the minimally qualified sets. Additionally, Γ should be monotonically
increasing, so we obtain

Γ = {{C,K}, {C,A}, {C,B},

{K,A,B}, {C,K,A}, {C,K,B}, {C,A,B},

{C,K,A,B}}.

Since we wish to work with a complete access structure, the unqualified
sets then become

∆ = 2P \ Γ

= {∅, {C}, {K}, {A}, {B}, {A,B}, {K,A}, {K,B}},

and (Γ,∆) is the access structure we want to achieve.
To visualize an access structure, it can sometimes be enlightening to
look at the lattice structure inherent to the subset relation, and see that
green (being qualified) propagates upwards, while red (being unqualified)
propagates downwards.

{C,K,A,B}

{C,K,A} {C,K,B} {C,A,B} {K,A,B}

{C,K} {C,A} {C,B} {K,A} {K,B} {A,B}

{C} {K} {A} {B}

∅

When dealing with more parties, explicitly writing out the access structure
becomes infeasible, as we would need to specify 2N sets (with N = |P|). Even
restricting this to only describing the minimally qualified sets can still lead
to an exponential number of sets to specify. Therefore, we often infuse some
extra structure. The most common occurrence of this is in t-threshold access
structures, where all sets with more than t parties are qualified. For values of
t < N

2 , this is also referred to as honest majority.

LINEAR SECRET SHARING SCHEMES 27

Definition 3.3: t-Threshold Access Structure

Let (Γ,∆) be an access structure. It is called a t-threshold access structure
when

X ∈ Γ ⇐⇒ |X| > t.

Another structural property that is commonly encountered is a Qℓ access
structure. In contrast to threshold access structures, Qℓ structures do not
provide a description of the access structure, but rather a condition to be
fulfilled. Specifically, it is concerned with how many unqualified sets in ∆ it
takes to obtain the entire set of parties P.

Definition 3.4: Qℓ Access Structure

An access structure (Γ,∆) for P is a Qℓ access structure when no union
of ℓ sets Xi ∈ ∆ covers all of P.

From this definition, it is clear that any Qℓ access structure is also Qk for k ≤ ℓ.
Additionally, this condition subsumes the family of threshold access structures
where t < N

ℓ , as in that case ℓ · t < N and no ℓ unqualified sets can cover all of
P by cardinality. In this thesis, the Q2 condition will be of central importance,
as it is a natural generalization of the honest majority setting by the earlier
argument.

Example 3.3

Resuming our running example, observe that while the access structure
is not a threshold structure and hence not “honest majority”, it does
satisfy the Q2 property. By contrast, it is not Q3 (or indeed Qk for
k > 2), as for instance the three unqualified sets {K,A}, {K,B} and
{C} have a union equal to {C,K,A,B}.

3.1.2 LSSS for a Given Access Structure

Having defined access structures, we are now ready to give a definition of a
secret sharing scheme. For now, it will be mostly an abstract definition of what
it does, without any details on the how. In the next section, we then cover a
concrete mathematical construction that provides instantiations for any linear
secret sharing scheme.

28 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

Definition 3.5: Secret Sharing Scheme (SSS)

Let P = {Pi | 1 ≤ i ≤ N} be a set of parties. A secret sharing scheme
consists of the following two functionalities:

Share: takes as input some secret value s and outputs share si to party
Pi. si need not be a single value, it could also be a vector of values. We
also write (si)i = [s], with the understanding that the shares are held in
a distributed manner.

Rec: A subset of parties S ⊆ P inputs their shares, and reconstructs the
shared secret. The output is either s, if the S is qualified, or ⊥ if S is
unqualified.

If (Γ,∆) is an access structure for P, every set in Γ is qualified for Rec,
and every set in ∆ is unqualified for Rec, the secret sharing scheme is
said to realize the access structure (Γ,∆).

Commonly — and especially further on in this chapter — we not only want
to share some data, we also want to be able to perform some computation on
the shared data, without having to reveal it. Therefore, we restrict our view
to a specific family of secret sharing schemes: Linear Secret Sharing Schemes.
As the name already implies, this family of sharing schemes will allow us to
compute linear functions over secret shared values without any communication
beyond the initial sharing. That is, we want to achieve a linear secret sharing
scheme such that α · [x] + β · [y] = [α · x+ β · y].

To achieve this property, we only require a single restriction to the reconstruction
process Rec, namely that it is a linear combination of the input shares.
Concretely, this means that for every qualified set Q ∈ Γ, there is vector
λQ such that if we let sQ represent the shares collectively held by the parties in
Q, reconstruction consists of computing only the inner product s = ⟨λQ, sQ⟩.1
A straightforward verification confirms that this restriction suffices to obtain
the desired property:

Rec(α · xQ + β · yQ) = ⟨λQ, α · xQ + β · yQ⟩

= α · ⟨λQ,xQ⟩+ β · ⟨λQ,yQ⟩

= α · Rec(xQ) + β · Rec(yQ).

1We let sQ be a vector of ring elements here. So if any si consists of more than a single
element, each element of si occurs as a separate element of sQ.

LINEAR SECRET SHARING SCHEMES 29

Definition 3.6: Linear Secret Sharing Scheme (LSSS)

An SSS for which reconstruction is a linear combination of the input
shares is a Linear Secret Sharing Scheme.

Example 3.4

We briefly consider a sample construction of a secret sharing scheme
for the setting of example 3.1. To compute the shares, we first sample
some uniformly random values r2, t2, t3 ∈ F from the (finite) field over
which we are working. Then we compute r1 = s− r2 and t1 = s− t2− t3.
To C we give as share r1, to K we give the shares (r2, t1), to A the
shares (r2, t2) and to B the shares (r2, t3). In this way, we ensure that
each of the minimally qualified sets can either compute s = r1 + r2 or
s = t1 + t2 + t3, while each of the unqualified sets lacks at least one
uniformly random value for both of those computations.

Example 3.5: Shamir Secret Sharing

Leaving behind our running example for a moment, we can also consider
a secret sharing scheme that can be instantiated for any t-threshold
access structure, as long as the ring of definition allows an exceptional
sequence S = (α0, α1, . . . , αN) of length N + 1. For ease of construction,
we also assume (without loss of generality) that α0 = 0 ∈ S. Observe
that for the case of R = F a finite field, this requirement reduces to F
being large enough to contain N + 1 distinct values.
For a sharing with N parties and threshold t, each party is publicly
assigned a distinct value αi ̸= 0 from S. In order to share a value s, a
polynomial of degree t

f(X) = s+
t∑

i=1
ri ·Xi

is generated with uniformly random coefficients ri. Each party Pi then
receives as share f(αi). Observe that the secret s = f(0), which is not
distributed to any party as per our earlier definition of αi.
Once t+1 or more parties combine their shares, any t+1 points uniquely
define the polynomial f(X). Interpolation can then recover it and
compute s = f(0) for reconstruction. Interpolation and evaluation at 0
can be immediately combined into a single linear combination, showing
that the Shamir secret sharing scheme is an LSSS.

30 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

3.1.3 Monotone Span Programs

In order to make more mathematically clear statements and proofs later on,
it would be good to have an object we can manipulate more liberally, while
still keeping an equivalence with the LSSS structure we defined earlier. The
linearity properties of LSSS quickly point us towards the use of linear algebra
and matrices to describe the secret sharing scheme. We can generate all share
values from a single matrix-vector multiplication with a random vector, as
long as that random vector satisfies the correct linear relation to allow for
reconstruction. Once we have all share values, we assign them to the correct
players. This idea is what brings us a formal definition: the Monotone Span
Program.2

Definition 3.7: Monotone Span Program (MSP)

A monotone span program is a 4-tuple (F,M, ε, ψ), such that:

• F is a field

• M is an m× d full-rank matrix over F, with d ≤ m

• ε ∈ Fd is a non-zero vector

• ψ is a surjective mapping of {1, 2, . . . ,m} → P mapping rows of
M to parties in P.

If we can give a proper definition of the Share and Rec operations of an LSSS
starting from an MSP, this shows every MSP defines (or “induces”) an LSSS.
To Share a value s, the dealer samples a random vector r ∈ Fd, such that
the inner product ⟨r, ε⟩ = s. Each party Pi then receives the share vector
si = ((M · r)j | ψ(j) = Pi)j . By the surjectivity of ψ, each share vector for each
party is non-empty. To Rec the value s given the shares sQ from a qualified set
of parties Q, consider the matrix M̃ as the matrix formed by the rows of M
that ψ maps to parties in Q. We set the recombination vector λQ to be such

2The “monotone” part of the name comes from the same monotonicity condition that we
encountered before when introducing access structures.

LINEAR SECRET SHARING SCHEMES 31

that M̃⊤ · λQ = ε, satisfying

s = ⟨ε, r⟩

= ⟨M̃⊤ · λQ, r⟩

=
(
M̃⊤ · λQ

)⊤ · r
= λ⊤Q · M̃ · r

= λ⊤Q · sQ

= ⟨λQ, sQ⟩.

This automatically gives a definition of the access structure realized by the
LSSS induced by the MSP: Q ∈ Γ ⇐⇒ ε ∈ Im(M̃⊤). The converse direction,
constructing an MSP that induces a given LSSS, is not as simple to describe,
as an LSSS gives far less structure to work with — which was of course our
motivation to introduce MSPs in the first place. The key observation to make
is that we can take the condition M̃⊤ · λQ = ε, fix a value for ε and solve a big
linear system for the matrix M .

Also observe that while every MSP induces a unique LSSS, any LSSS may admit
a large number of MSPs. Indeed, the choice of ε can be seen to be arbitrary and
an equivalent MSP can be obtained for every choice of ε. Similarly, the ordering
of the rows of M can be changed, leading to only a change in the definition of
ψ to keep the same LSSS.

Example 3.6

We revisit the LSSS from example 3.4 and construct one of the MSPs
realizing it. Both the scheme as presented earlier and the MSP we
construct now are independent of the field being used, so any choice of
F will work. As mentioned earlier, the choice of ε is somewhat arbitrary,
so we will choose the first standard basis vector ε = (1, 0, 0, 0) for it.
This means that our random vector r will be of the form (s, r1, t1, t2),
and that we should construct the matrix M in such a way that they get

32 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

correct share. The following matrix achieves this goal:

M =

0 1 0 0
1 −1 0 0
0 0 1 0
1 −1 0 0
0 0 0 1
1 −1 0 0
1 0 −1 −1

.

Observe here that M contains repeated rows whenever multiple parties
receive the same value. For readability, we present the value of ψ
as a sequence of players, assigning rows of M from top to bottom:
ψ = (C,K,K,A,A,B,B).

Example 3.7

Finally, consider the Shamir secret sharing scheme introduced earlier. If
we let the random vector r represent the coefficients of the polynomial
f(X), we require the value of ε = (1, 0, 0, . . . , 0), as f(0) = s. As secret
sharing corresponds to polynomial evaluation at fixed points αi, the
N × (t+ 1) matrix M becomes the Vandermonde matrix V (α1, . . . , αN),
and the assignment function ψ will map i 7→ Pi. It is easy to verify that
the recombination vectors obtained from submatrices of M correspond
to those obtained from the polynomial interpolation approach.

3.2 Secure Multiparty Computation (MPC)

Now that we know how to distribute data among multiple parties, it is time
to consider how to perform computation with multiple parties. In this section,
we will first give a short overview of the general setting: we discuss how to
represent computation and “programs” in ways that are amenable to multi-party
computation, present a few of the different high-level approaches to build MPC
and how to evaluate the performance of MPC protocols. In the next section, we
can then have a closer look at how we can use linear secret sharing techniques
to enable computation.

SECURE MULTIPARTY COMPUTATION (MPC) 33

3.2.1 Representing Computation

If you ask a software developer how they would represent a piece of computation,
they might reply with their favourite programming language. A more
theoretically inspired computer scientist may talk about Turing Machines
or even lambda calculus. And if you manage to talk to the right kind of
mathematician, you could even hear the opinion that computation is irrelevant,
because you only need to prove existence or non-existence of a solution.

All of these options go to illustrate that picking a single “correct” representation
for computation is not a trivial matter. Generally speaking, there is common
structure that is usually chosen for the purposes of MPC: circuits. We can
think of a circuit as an abstract representation of what happens in a piece of
hardware. There are “wires” that carry values around, and those wires connect
the outputs of some “gates” to the input of the next gates. Additionally, we
enforce the structure that no gate’s output can eventually end up at its own
input again. From the viewpoint of a computer scientist, we could say that the
gates form a directed acyclic graph.

From this description, the question of what a gate actually is or does remains.
We can find a first option by reconsidering the inspiration from hardware:
boolean gates. In a boolean circuit3, the gates consist of XOR and AND gates,
that, respectively, compute the XOR and the AND operation on their inputs,
with all wires carrying single-bit values. It is known — and indeed used in
hardware — that any computation can be constructed from a limited choice
of gates, be it NAND or XOR+AND for instance. In this particular case, the
choice for XOR and AND is more attractive as the XOR gate performs a linear
operation over the bits.

A second, though similar, option appears when we try to generalize these
boolean circuits to a larger domain. When we consider bits as being values of
the finite field F2, we can frame the XOR operation as addition, and AND as
multiplication. Then, letting our field be larger, say Fq, we can build circuits
with wires carrying Fq values, and ADD and MUL gates computing addition
and multiplication over the field respectively. When restricting values to come
from {0, 1} ⊆ Fq, and letting a ⊕ b = a + b − a · b, we can recover boolean
circuits, hence proving that these arithmetic circuits are as powerful.

Additionally, when designing cryptographic protocols, it is oftentimes possible to
achieve certain functionalities more efficiently than with a generic decomposition
into ADD and MUL gates. If, for instance, you need exponentiations in your
protocol, and you find a way to compute those more efficiently than a generic

3Sometimes also called a binary circuit.

34 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

decomposition into multiplications — or even if you have a way to more efficiently
compute squares for the square-and-multiply approach to exponentiation — you
could add that as a custom gate or gadget to your circuit description.

While boolean and arithmetic circuits are able to describe any computation,
there are some downsides when you compare them to some other possible
descriptions of computations. However, they can be seen to closely align with
the “oblivious” evaluation of the computation we aim for in MPC, where the
computation can be performed without having to “look under the hood” at the
actual values carried by the wires. All you need to evaluate a circuit is a way to
evaluate its gates. The other side of that coin unfortunately means that some
things become hard or even impossible to express or implement. For example,
when some part of the computation is only used conditionally, based on an input
or other intermediate value, it becomes impossible to skip the computation
when the condition is false, and both paths are taken “simultaneously”. It is
impossible to tell whether the condition is true or false, after all. An extension of
this problem also appears when trying to repeat some computation. Conditional
loops run into the same problem as conditions, and without adding extra
structure, fixed-length loops result in repeated structure in the resulting circuit
description.

As an alternative model, one can also look at virtual machines (VMs) that
repeatedly execute a single step of computation, based on the current state
of some register values, and a single instruction. The evaluation of such an
instruction can then for instance be represented by a circuit. Additionally, such
a VM4 might be able to read and write to some random-access memory (RAM),
where the accesses are performed with arbitrary values. Much cryptographic
research has gone into trying to make this RAM access simultaneously efficient
and oblivious.

Example 3.8

As a final example, consider the following arithmetic circuit — enhanced
with a gadget to calculate the square root — that takes two inputs and
computes their arithmetic and geometric means.

4Although with appropriate gadget design, this is also possible in a circuit model.

SECURE MULTIPARTY COMPUTATION (MPC) 35

1
2 a b

ADD MUL

MUL
√
·

3.2.2 Flavours of MPC

With circuits in our tool belt and the realization that being able to add and
multiply values obliviously is sufficient to compute anything obliviously5, we
can now turn our attention to the common settings for MPC. For this, we
will consider things like distinguishing which parties provide inputs and which
receive the output, which parties — or subsets of parties — might be malicious
and work together to learn things from the protocol they should not be able to,
in which way parties may cheat, and more. We then also look at the high-level
idea behind some of the common forms of MPC and how they correspond to
those differences in setting, delaying the discussion of concrete constructions
and techniques to the next section.

When multiple parties come together to perform some computation, we can
consider how many parties contribute to the protocol, as well as identify some
different roles that these parties may perform. To compute something, the first
thing we need is data to compute over, so some parties — the input-bearing
parties — should provide some input to the protocol. Then the computation
itself needs to be performed over these inputs, which the computing parties
do. And finally the output should be revealed, to the output-receiving parties.
These roles need not be exclusive, and indeed, more than just occasionally, all
parties will take up all three roles within the same protocol.

MPC protocols can also differ in their adversary model: what a theoretical
attacker is “allowed” to do — usually by corrupting some of the parties, hence
gaining knowledge of their internal state and influencing them to behave in
certain ways — and what guarantees the protocol offers under those conditions.
This can usually be classified along some orthogonal axes. On the first axis,
we can distinguish a passive (sometimes also called semi-honest or honest but
curious) adversary from an active adversary. A passive adversary will correctly

5As long as we have our inputs in some right form.

36 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

follow the protocol, but try to learn secrets from the communication it can
observe and the data held by the corrupted parties, while an active adversary
can freely deviate from the protocol, and for instance learn secret information
by introducing errors and observing how those affect the public communication.
In the case of an active adversary, we can then distinguish whether we want
to simply detect their presence and stop the protocol (called active security
with abort), or be able to correct for the malicious behaviour and complete
the protocol with the correct output regardless (known as guaranteed output
delivery).

On a second axis, we can determine how the adversary is allowed to choose the
parties to be corrupted. For static corruptions, the adversary has to make a
choice at the start of the protocol, but in the case of dynamic adversaries, they
can make the decision to corrupt a party based on the observed communication
or data gathered from previous corruptions. In some cases, we could even allow
parties to only be temporarily corrupted, after which the adversary can no longer
influence the party, but may choose to corrupt a different one. Additionally, and
this could be considered as a third orthogonal axis, we often want to restrict
the possibilities of parties that could be corrupted by the adversary. After
all, if every party is corrupted, it is trivially impossible to have any security
guarantees. As such, we describe an access structure (such as in definition 3.2)
that tells us which sets of corruptions should guarantee security. In some cases,
this could be enhanced to have different access structures for active and passive
corruptions. We then of course have similar terminology concerning these access
structures as before: t-threshold structures, Qℓ conditions and honest majority
all still apply.

Finally, it is important to be aware of the “environment” in which the parties
interact. When the network can be relied upon to deliver sent messages
within a certain timespan, we speak of a synchronous network, and we can
build simpler protocols that rely on this property. On the other hand, in an
asynchronous network, we need to take into account that messages may be
lost or severely delayed somewhere along the way to the recipient. Related to
this, the availability of a broadcast channel — where all (honest) parties are
guaranteed to receive the same message — can drastically change the protocol
design and the theoretical guarantees that can be made.

3.2.3 Cost and Efficiency

When choosing a protocol for an application, one has to be able to compare it
to alternatives and decide which is better for the given situation. During the
design of a protocol however, any concrete application may not yet be known. It

BUILDING MPC FROM SECRET SHARING 37

is nevertheless necessary to already have some metrics that will commonly affect
the concrete performance and enable comparisons between different protocols.

As a first intuition, it might be tempting to analyse the computational complexity
of an individual computing party and try to minimize that. While it should
of course not be entirely neglected, this measure completely ignores the fact
that the computing parties need to communicate over the network, and form a
distributed system. Therefore, we should investigate the impact of any protocol
on the amount of communication required. We use two complementary measures
for this, the relative importance of which will be affected by the type of network
the protocol is deployed in. In networks with low latency, a single round of
communication — in which every party potentially sends a message to every
other party — may not take up much time, leaving the majority of the cost
of communication to depend on the amount of data being sent. On the other
hand, if the impact of the network latency becomes more pronounced, the plain
cost of having an extra round of communication may well justify reducing the
number of rounds at the cost of having to send more bits over the wire overall.
In practice, minimizing the number of communication rounds and the amount
of communication will indeed also work towards having smaller computational
complexity. Most operations performed tend to be fairly simple; and having less
communication means that less data needs to be computed before being sent.

With a focus on optimizing for certain classes of applications, it is sometimes
also possible to define a more narrow metric, and optimize even more towards
that. The most common example for this is the preprocessing model, in which
the parties can start executing the protocol before they know their inputs or
even the specific computation to be performed. Their goal is then to precompute
useful, but random, data so that the online phase of the protocol — once the
inputs and computation are known — can be performed as fast as possible.
The cost of the preprocessing phase is of lesser importance compared to the
speed at which results are known once the actual computation can be performed.
We can again count the number of communication rounds and the amount
of communicated data as measures for the efficiency of this online phase. In
the next section, we will see multiplication triples as an example of useful
preprocessing data.

3.3 Building MPC from Secret Sharing

Different “families” of MPC exist, and can serve different purposes, as well
as achieve different performance characteristics. One approach depends on
Fully-Homomorphic Encryption (FHE), which enhances ciphertext with the

38 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

capability of obliviously performing ring operations on the underlying plaintext.
The final ciphertext can then be sent to the output-receiving parties who
have the corresponding decryption key. While this enables very efficient data
and round complexity — after all, only the inputs and the output need to
be communicated — it has the downside that performing the homomorphic
computation is computationally rather expensive, and the computing party
must be distinct from the output-receiving parties, as otherwise they could
decrypt the inputs immediately.

Another approach, which is specialized for 2-party computation, and also
achieves a constant number of rounds, is that of garbled circuits. Here, one of
the two parties acts as the “garbler”, and obfuscates (garbles) the circuit under
consideration, with their own inputs baked in. Then the second party acts as
the “evaluator” and uses the information received from the garbler to compute
the circuit on their own inputs, and finally obtain the output.6

And finally, there is MPC based on LSSS, which supports an arbitrary number of
parties and which will be the focus for the rest of this chapter. Traditionally, all
parties are considered as simultaneously input-bearing, computing and output-
receiving, but the roles can be distributed differently without much trouble. All
parties secret-share their inputs such that everyone holds a share of all values
in the computation at all times. Linear operations can be performed locally, as
the secret sharing scheme is linear, but communication is required to evaluate
multiplications. As a result, the number of required rounds tends to scale with
the multiplicative depth of the circuit, and the data complexity with the total
number of multiplications. To obtain the final output, each party can broadcast
their shares to all other parties, and everyone can then locally perform the
reconstruction of the LSSS.

3.3.1 Passive Security

As mentioned before, the main challenge when building an MPC protocol
from an LSSS is to achieve multiplication. In this section, we briefly present
a few common techniques, specialized to the Shamir secret sharing scheme
(see example 3.5) with honest majority and a semi-honest adversary. A more
elaborate treatment for general Q2 access structures can be found later on in
Chapter 5.

Consider what happens when the parties have shares [a] and [b], and compute
the local product of their shares. Recall that ai = f(αi) and bi = g(αi), while

6In practice, to have inputs provided by the evaluator, we additionally need to use a
cryptographic primitive known as oblivious transfer.

BUILDING MPC FROM SECRET SHARING 39

the secrets a = f(0) and b = g(0) are embedded in the constant term of the
polynomials. The products ci = ai · bi = f(αi) · g(αi) = (f · g)(αi) now lie
on the degree 2t polynomial h = f · g. This polynomial does satisfy that
h(0) = (f · g)(0) = a · b, as we would want from a multiplication operation, but
importantly, is no longer random and hence not perfectly secure,7 nor indeed
of the correct degree. This means that at least 2t + 1 parties are required
to reconstruct the underlying value — which is still possible thanks to the
assumption of honest majority — and we could only perform multiplications up
to a depth of 1 without losing the information required to reconstruct. Therefore,
we aim to have a step of communication that will simultaneously reduce the
degree of this polynomial h back to t and re-randomize its coefficients (other
than the constant term) such that it becomes a “regular” secret-shared value
again.

A first possible approach is due to [Mau06]. It relies on the fact that
a reconstruction for the degree 2t polynomial h exists, using only linear
combinations of the shares. While the product cannot be publicly reconstructed
without violating privacy, the reconstruction can happen in the basic t-threshold
Shamir scheme. Every party takes their value ai · bi and shares it to all parties
in the base LSSS. Since the reconstruction of h is linear, it can be computed as
a linear function

[a · b] = Rec2t([a1 · b1], . . . , [aN · bN]).

All “re-sharings” were random and of degree (at most) t, hence the resulting
share of the product a · b will be of the correct degree and fully random.

An alternative approach, due to [DN07], uses the same properties, but
additionally consumes some independently generated random pairs ([r]t, [r]2t).
Here we use the notation [x]d to represent a random degree d polynomial with
x as constant coefficient. These pairs can be generated in a preprocessing phase
with some techniques based on so-called superinvertible matrices, such as the
Vandermonde matrix. Given such a pair and the values ai · bi, one can interpret
ai · bi− r2t,i as a random degree 2t sharing of σ = a · b− r = Rec([a · b]2t− [r]2t).
Thanks to the randomness of r, this value σ reveals no information, and can
safely be publicly reconstructed. Given σ, the parties can then locally compute
[a · b]t = [r]t + σ, thus obtaining a uniformly random share of degree t of the
product a · b. To ensure privacy and avoid linear relations between products
from leaking, no such random pair ([r]t, [r]2t) should be used more than once.

As a final common approach, we present the idea from [Bea92]. Here, we
no longer compute the local product, but instead rely on randomness from a
preprocessing phase to directly enable multiplication through linear operations

7For example, h cannot be irreducible.

40 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

and a single round of reconstruction. This means that, as long as the
preprocessing functionality can be achieved, the technique works for arbitrary
access structures, including a full threshold structure. From the preprocessing,
we assume that we can obtain random multiplication triples8 ([x], [y], [z] = [x·y]).
Such triples could be generated in several of different ways, including the above
approaches for Q2 access structures. When given such a triple ([x], [y], [z]) and
two values [a] and [b] to multiply, the parties open two values ρ = [a+ x] and
σ = [b+ y]. Observe that both values are uniformly random as they are masked
by the uniform random values x and y respectively. With these values, the
parties can then locally compute

[c] = [z] + ρ · [b] + σ · [a]− ρ · σ.

One can confirm that indeed

a · b = x · y + (a+ x) · b+ (b+ y) · a− (a+ x) · (b+ y).

Here too, the preprocessing material should not be reused between multiple
multiplication calculations, as that would reveal linear relations between the
inputs.

3.3.2 Security with Abort

Now that we have some approaches to compute multiplications in a semi-honest
setting, the natural next step is to see if they can be transformed to deal with
active adversaries. Our first target is security with abort: the parties stop
executing the protocol when any malicious behaviour is detected, and before
any information can leak towards the adversary.9 We present some general
ideas here, and revisit the topic for a more technical overview as applied to Q2
access structures in chapter 5.

In contrast to the case for passive security, there are now several subprotocols
where we need to watch out for malicious behaviour, rather than only the
multiplication. The first one of these is the sharing of the inputs. Here the
adversary could choose to distribute shares that are not consistent with the
secret sharing scheme chosen.10 This could for instance result in openings of the

8These are often called Beaver triples, after Donald Beaver who first proposed them.
9There also exists the concept of identifiable abort, in which not only the malicious

behaviour is detected, but the honest parties can also pinpoint at least one malicious party.
This allows for further deterrence against acting dishonestly, as well as enabling the exclusion
of dishonest parties from further protocol executions.

10Keep in mind that we do not worry about parties sending “incorrect” input values, as
even with a magical black box that would perform the computation with perfect security this
would be possible. We instead simply want to perform the computation on the given inputs.

BUILDING MPC FROM SECRET SHARING 41

shares later giving different results for different parties. The common solution
is to first generate random secret sharings, for which several approaches exist.
One can check the consistency of shares by opening several randomly chosen
sharings, for instance, without leaking information, as the underlying value is
meaningless. Such a random sharing can then be opened towards only the input
party, who can compute the difference of the opened value with their input and
communicate — in the clear — a linear adjustment that can be used to update
the shares.

The second subprotocol we need to worry about deals with the opening of shares.
In order to ensure that everyone obtains the same opened value, we want to
check that all parties received the same shares. This can be done with extra
communication, but that comes at a significant overhead in cost. Instead, the
parties will accumulate a checksum over all shares that have been opened so
far, and only perform a single round of communication to verify the correctness
of that checksum whenever a “meaningful”11 value is opened.

The reader with a passing knowledge about code theory may observe that there
exists a close relation between detecting errors in the shares during reconstruction
like this and error detection in linear codes. This is no coincidence and is explored
for instance in [SW19]. Such insights can also further provide intuition towards
building protocols with guaranteed output delivery from error correcting codes,
such as Reed-Solomon codes, which can be framed as a reinterpretation of
Shamir secret sharing.

Lastly, we can turn our focus to the final aspect of secure-with-abort MPC:
multiplications. If the parties have access to actively secure preprocessing
material, we can verify that the degree reduction pairs of [DN07] or Beaver triples
provide active security with the above approach to securely reconstructing shares.
However, to securely generate this preprocessing, or to perform multiplications
without it, different methods need to be established. A very generic and costly
approach could be to have every party prove their honesty with a zero-knowledge
protocol (which we will cover next, in a general sense, in chapter 4).

More specialized methods can however provide better performance, both in
terms of communication and computational costs. In one such approach, the
parties perform the same computation twice, once with shares of the actual
values [x] and once with shares of the value [α · x].12 They can then perform a
final check that all values have the correct correspondence in both executions.
This can be seen as a specific instantiation of a general concept where values

11By this, we mean that the value does not come from the uniform distribution, such as
the final outputs of the computation.

12These computations actually occur in parallel, both in order to not double the number of
rounds needed and to be able to compute [α · x · y] as the multiplication of [α · x] with [y].

42 MULTIPARTY COMPUTATION FROM LINEAR SECRET SHARING

have an attached message authentication code (MAC) that can be validated
to ensure validity of the computation. In some protocols, these MACs can for
instance be held collectively by all parties, or by each party holding a MAC for
every other party.

An alternative family of specialized methods makes the parties compute
additional, random multiplications — just like they would do in the passively
secure preprocessing for multiplication triples — and “sacrifice” these triples to
verify the validity of other triples. Such a sacrifice masks the target triple with
the random one, and can then securely perform a reconstruction to check the
correctness. A target triple could either have the actual computation’s value
embedded, or be another random triple in some preprocessing phase providing
active security. Further optimizations also exist that improve upon the number
of random triples needed per target triple. These techniques often rely on the
fact that many multiplications need to be performed or checked at the same
time.

CHAPTER 4

Zero-Knowledge Proofs

In this chapter, we explore what it means to prove a statement, and how one
could prove a statement such that it does not reveal any further information,
while simultaneously being convincing. We look at a few such zero-knowledge
proofs for specialized statements before diving into constructions for proving
more general statements based upon the multiparty computation schemes from
linear secret sharing schemes that were introduced in the previous chapter.

4.1 Proof and Arguments . 44

4.1.1 Definitions and Properties 44

4.1.2 Knowledge . 45

4.1.3 Eliminating Interaction . 50

4.2 Knowledge of Homomorphism Preimages 51

4.2.1 Proving the Discrete Logarithm 51

4.2.2 Exponentiation is a Homomorphism 52

4.3 Zero-Knowledge Proofs from MPC 53

4.3.1 Proofs for General Computation 53

4.3.2 Building on MPC . 55

43

44 ZERO-KNOWLEDGE PROOFS

4.1 Proof and Arguments

In the previous chapter, we hinted at the possibility of proving honest behaviour
to enable security against active adversaries. While it may not be the
most efficient approach, it is something that can be made possible through
cryptographic techniques. In this case, we not only see the want for a way to
prove things, but even to do so in a manner that ensures privacy: part of the
statement being proven involves secret data that should remain known to only
the prover. Any party verifying the proof should learn nothing about this secret
data; hence it is given the name Zero-Knowledge Proof (ZKP).

ZKPs find many applications as building block in more elaborate cryptographical
protocols, such as our example for MPC. Another use case involves identification
schemes, where the prover wishes to convince a verifier that they are who they
say they are, usually by proving the knowledge of some secret, such as the
preimage for a one-way function. From such identification schemes, one can
additionally derive signature schemes that combine the identification aspect
(binding to the identity represented by a public key) and a message to be signed.
In the recent call by NIST for post-quantum digital signature schemes1 several
of the proposals use this transformation, and even rely on the specific type of
ZKP (MPC-in-the-Head schemes) that will be the focus of the last part of this
chapter.

4.1.1 Definitions and Properties

Before we can properly define what exactly a Zero-Knowledge Proof is, and
what exactly makes it have zero knowledge, we first define what we understand
by a proof, and what properties we require from such a mathematical object.

Ordinarily, one would try to define a proof as some sequence of steps, where
each follows logically from the previous ones and a set of axioms. The goal, then,
is to convince some verifier2 of the correctness of some statement. Zooming
out a bit and forgetting about the structure of a proof for a moment, we can
then try to define it by its intended function.

Definition 4.1: Proof

A proof is an interaction between a prover P and a verifier V, where P
attempts to convince V of the veracity of some statement.

1https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
2Whether that would be an external entity, or merely oneself.

https://web.archive.org/web/20240607101715/https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

PROOF AND ARGUMENTS 45

The details on how exactly such an interaction looks (which we could call a
proof system) — for instance the prover sending a list of logical steps to the
verifier; or P and V engaging in a cryptographic protocol — become of secondary
importance compared to the concept of a proof and the properties of a proof
system.

In order for a proof system to correspond to our initial mathematical intuition
and common sense, it needs to satisfy a few criteria. Ideally, if a statement is
true, it should be possible to prove it.3 This property, we call completeness.

Definition 4.2: Completeness

A proof system is called complete if every proof for a true statement is
accepted by the verifier, except for a negligible probability.

Additionally, we would like false statements to not be provable, or alternatively,
for the verifier to reject false proofs. This is known as the soundness of the
proof system.

Definition 4.3: Soundness

A proof system is called sound if every proof for a false statement is
rejected by the verifier, except for a negligible probability.

Either of these properties can either hold unconditionally, or be relaxed to hold
except for some negligible probability. When soundness is allowed to only hold
when the prover is in some sense restricted, we rather speak of arguments in
an argument system. Common examples of such prover restrictions include
computational hardness assumptions or limiting the amount of interaction with
some external resource.

4.1.2 Knowledge

In discussions of (cryptographic) proof systems, the word “knowledge” appears
frequently. However, it tends to have two separate meanings in this context.
The first meaning usually appears as part of the phrase “proof of knowledge”
or “knowledge-soundness”. The second meaning is normally negated as “zero-
knowledge”, which opens up some bigger questions as to how we should think of

3Note that this is a superficial and intuitive request that will not always hold up to further
scrutiny. For instance, Gödel’s incompleteness theorems may worry the observant reader here.
In practice, for our cryptographic applications, the statements being proven will be restricted
enough that this property can still be achieved.

46 ZERO-KNOWLEDGE PROOFS

proofs. While the two meanings are not entirely unrelated and both still reference
the colloquial use of the word, it is interesting to note that zero-knowledge is
not exactly the opposite of knowledge in the first sense.

The term proof of knowledge (PoK) is used for proof systems that exhibit —
in addition to the properties from before — knowledge-soundness. In intuitive
terms, the prover is proving that they know some value that satisfies some
condition. For practical situations, this condition will most often involve some
one-way function. Intuition is of course not enough for mathematical rigour,
so we should ask ourselves what it means, formally, for the prover to know
something. For this, we imagine a hypothetical party or algorithm: a (knowledge)
extractor. The knowledge extractor is allowed to interact with the prover, and
rewind them to some previous state or point in time. With this interaction, the
goal of the extractor is then to output a value satisfying the condition placed of
the “known” value. If every prover that has a non-negligible chance of making
the verifier accept admits a successful extractor (with non-negligible success
probability), we call the proof system knowledge-sound.

Definition 4.4: Knowledge-Soundness

A proof system is called knowledge-sound if for every prover, there exists
a knowledge extractor that, upon interaction with the prover, outputs a
valid witness to the proof’s statement with non-negligible probability.
A proof for a knowledge-sound proof system is also called a proof of
knowledge.

Note that the existence of an extractor does not necessarily mean that the
prover has the value under consideration explicitly stored in memory. It merely
indicates that the prover has enough information to efficiently compute the
value should the need arise.

Besides having the prover show that they know some “useful” value, we also
often want to make sure that the verifier does not learn that value. Indeed, if
the prover is e.g. somehow proving their identity, it would likely be a bad idea
to enable the verifier to replicate that proof somehow and convince some second
verifier that they were the prover instead. To strengthen this requirement a
bit, we want the verifier to learn nothing at all, other than the veracity of
the prover’s claim. If we can achieve this, we call it the Zero-Knowledge (ZK)
property. Before properly formalizing this notion, we can first try to draw a
first conclusion based solely on our intuitive understanding: ZK proofs must
involve interaction between the prover and the verifier. Consider to the contrary
a proof system where the prover simply outputs a bit string π as proof and
sends it to the verifier. If the verifier accepts the proof, they are also able to

PROOF AND ARGUMENTS 47

“replay” it towards a second verifier, who would naturally also accept it using
the same verification procedure. A PoK with the ZK property is commonly
referred to as a ZKPoK.

To get a proper definition for the ZK property, we can start from this idea and
expand on it a bit. If we lift the concept of a single bit string as proof to a
setting with interaction, we can define the transcript of a protocol as the ordered
sequence of messages sent between the parties. In a Zero-Knowledge proof, we
require that this transcript cannot, in turn, be used as a (non-interactive) proof
of the statement. That is, it should not be sufficient to check that a transcript
is consistent with a proof system to verify that the proof is correct. Hence, it
must be possible to forge a transcript that cannot be told apart from a genuine
interaction. This, finally, leads us to a more formal definition of ZK.

Definition 4.5: Zero-Knowledge

A proof system is Zero-Knowledge if for every verifier, there exists a
simulator that, without interaction with the prover and in expected
polynomial time, outputs a forged transcript that is indistinguishable
from a transcript of a genuine interaction between prover and verifier.
This indistinguishability can sometimes be relaxed to notions of statistical
or computational security guarantees, rather than merely information
theoretical.

At this point, it may be a natural reaction to wonder how soundness and
zero-knowledge are not mutually exclusive. After all, shouldn’t the ability to
forge a transcript mean that it is possible to “fool” the verifier? The answer
here lies once again in the interaction inherent in the protocol. Because the
verifier is an active participant in the protocol, and therefore knows that the
transcript was created in the correct order, they can be confident that the proof
was correct. The simulator is in contrast not bound to the same honest ordering
of the transcript, and can instead generate the transcript in any way they’d
like, as long as the final result is indistinguishable from a real one.

To now try and crystallize our intuition for all these properties some more, we
examine two low-tech examples of zero-knowledge proofs.

Example 4.1: Wine tasting

Imagine you are trying to learn about wine tasting. To you, the two
glasses in front of you taste exactly alike, but your instructor exclaims
“clearly these two are different, can you not recognize the difference in
tannins?”

48 ZERO-KNOWLEDGE PROOFS

You are unconvinced by this explanation, and so you want to put it to
the test. While the instructor (taking the role of prover) turns around,
you (the verifier) will shuffle the two glasses around, leaving them either
in their original places or swapped around in the end. Then it is the
task of the instructor to determine which of these two actions you took.
To argue completeness, we can see that if the instructor can indeed
taste the difference, they should be able to determine which glass is
which, and hence determine if the order is the same as before or not.
For soundness, we observe that if the instructor is unable to tell the
wines apart, they only have a one in two chance of guessing your action
correctly. If this experiment is repeated enough times, after k attempts,
a dishonest prover will only have a 1

2k probability of correctly guessing
every action. As long as we assume you choose either action with equal
probability, of course. And, as this experiment teaches you nothing at
all about wine tasting and the two wines still taste exactly alike to you,
this could arguably be called zero-knowledge. A simulator could for
instance first choose which action to take, and then simply choose the
corresponding correct answer for the instructor. The original statement
only makes a claim about an ability of the prover, rather than about
knowledge, so there is no knowledge to be extracted from the prover and
this is not a proof of knowledge.

Example 4.2: Sudoku

Now imagine you just solved a hard sudoku, and you want to challenge
your friend to also solve it. They try for a while, without success, and
start complaining that it cannot be solved. Of course, you want to prove
them wrong, but you do not want to simply reveal the solution, as that
would take away the challenge.
In this case, you will take the role of prover, while your friend will take
the role of verifier. As a first step, you take your solution to the sudoku,
and permute the digits. After all, the logic of sudoku does not rely on the
value of the digits, only on a distinguishable identity, and a permutation
of the digits does not change this underlying identity. For the second
step, you cover the entire (permuted) sudoku with scratch-off foil, and
show it to your friend. They then can make a choice between a few
options. Either, you reveal the cells that were already filled for the blank
sudoku, you reveal a specific column, you reveal a specific row, or you
reveal a specific three by three box. In the first case, your friend can
check that you revealed a permuted version of the original sudoku, and

PROOF AND ARGUMENTS 49

in all other cases, they can check that you revealed nine distinct digits.
Completeness follows easy, as the steps guarantee that the cells you reveal
will have the correct properties. Soundness is a bit more difficult, but
since you do not know the challenge your friend will give you, you cannot
satisfy all requests simultaneously without knowing a solution. Hence,
you only have a bounded probability of the revealed digits being correct,
which can again be improved by repeating the experiment multiple times.
The uniformly random permutation and the limited amount of revealed
digits ensure that, if the challenge is known beforehand, it is easily
answered without knowing a solution: either choose a random digit
permutation of the original sudoku, or choose a random order of all nine
digits to place in a row, column or box. A simulator can again apply
the same approach of first choosing the challenge and then choose the
taped-over sudoku.
In this example, we are dealing with a proof of knowledge, as your
claim is to know a solution to the given sudoku. To show this is indeed
the case, we can describe a knowledge extractor that can rewind the
prover and outputs a solution to the original sudoku. The essence of
the rewinding capability is that it allows the extractor to challenge
the prover multiple times for the same digit permutation. This means
that in only nine queries, it can reveal the entire (permuted) sudoku,
say by querying all nine rows. In combination with the original blank
sudoku, the digit permutation can be recovered, which in turn results in
a recovered solution.

There are some further subtleties that we do not fully address in this high level
overview. For instance, the verifier could decide which challenge to choose based
on previous communication with the prover. This complicates the simulation
argument, as used in the previous two examples, a bit, since a simulator must
exist for any verifier. Each verifier can however have its own dedicated simulator,
which allows for some leeway, and the problem can often still be solved by having
the simulator interact with the verifier. The simulator then often first guesses
the challenge, generates a corresponding message to the verifier, and checks
if it guessed correctly. If so, it can add the output to the forged transcript,
otherwise it simply starts over. Another issue can arise when we do not expect
the prover to be perfect. That is, they only prove the statement correctly with
non-negligible probability. This complicates the job of the knowledge extractor,
and again needs some further technical depth to ensure that it succeeds in
expected polynomial time.

50 ZERO-KNOWLEDGE PROOFS

4.1.3 Eliminating Interaction

In the previous section, we claimed that interaction was a strict necessity for
ZK proofs. However, in practical settings such as the construction of signature
schemes from zero-knowledge protocols, interaction may not always be possible
or desirable. Therefore, we may want to relax our definition a bit towards
non-interactive zero-knowledge proofs (NIZKs). While technical definitions exist,
for our intuitive purposes, it is enough to think of them as non-interactive
proofs, where the verifier learns nothing, other than the proof string.

This change in setting does not mean that all the work on interactive proof
systems is lost or useless. In many cases, it is possible to take an interactive
proof system, and convert it to remove the requirement of interaction. The
most common such case is when the verifier is a public-coin verifier.

Definition 4.6: Public-Coin Verifier

A public-coin verifier is a verifier that only sends messages that have
been sampled from a known distribution. That is, it “flips some coins”
and sends the result to the prover as some form of challenge.

Public-coin verifiers are fairly common, and in fact, both examples from the
previous section have one.

Given a zero-knowledge proof system with a public-coin verifier, the Fiat-Shamir
transformation (introduced by Fiat and Shamir in [FS87]) constructs a NIZK by
replacing the verifier with a random oracle (RO)4 that takes as input the entire
transcript up to that point, and outputs the verifier’s random coins. One can
think of a random oracle as a shared function, that takes arbitrary bit strings as
input and outputs uniformly random, fixed-length bit strings as output, ensuring
that identical inputs map to identical outputs. For practical applications, this
random oracle will usually be instantiated as a fixed chosen hash function,
which is not entirely theoretically correct, but “good enough” according to the
ROM heuristic. There are several security considerations to make when dealing
with the Fiat-Shamir transformation, such as the number of queries we allow
the prover to make to the RO, and how this interacts with the composition
of multiple repetitions with constant soundness error, but a deeper discussion
is outside the scope for this chapter. Some further details on specifically the
problems with sequential repetition are covered later in chapter 6.

4Thus moving the proof system into the so-called random oracle model or ROM.

KNOWLEDGE OF HOMOMORPHISM PREIMAGES 51

4.2 Knowledge of Homomorphism Preimages

In this section, we give an example of a ZKPoK that falls within the category
of sigma protocols, following [Mau15]. The prover wants to prove knowledge
of the preimage of a homomorphism (of groups, one can think of this through
the definitions of chapter 2 but having only one binary operation), for which
computing the preimage is assumed to be computationally hard. To do so, we
first look at Schnorr’s identification protocol [Sch90] and how its non-interactive
variant gives rise to Schnorr signatures, before briefly describing how Maurer’s
scheme generalizes and subsumes it. This section illustrates the construction
of ZK protocols for specialized or restricted statements, such that in the next
section, we can shift our focus to ZK proof systems for general computation
that build upon MPC protocols.

4.2.1 Proving the Discrete Logarithm

We first briefly give a definition of a sigma protocol, so that the reader can
recognize them where they show up. We will not always explicitly point out
which protocols are sigma protocols or not, but the specific structure occurs
commonly enough in the literature that being aware of it is generally useful.

Definition 4.7: Sigma Protocol

A sigma protocol is an interactive proof system in which the prover
and the verifier exchange three messages. The prover first sends a
commitment to the verifier; the verifier responds with a random challenge;
and finally, the prover sends one last message that depends on the
challenge and opens the commitment.

The name sigma protocol comes from the resemblance of visual diagrams of
this interaction to the Greek letter Σ.

Now we describe Schnorr’s sigma protocol to prove knowledge of a discrete
logarithm. Assume prime numbers p and q, along with a number g ≠ 1, such
that gq ≡ 1 (mod p).5 Now let y ≡ gx (mod p) be the public statement, with
0 ≤ x < q unknown except to the prover. The goal of the prover is then to
convince a verifier that they indeed know such a value x, without revealing any
further information. Since the process of finding x, given y, g, p and q (known
as the discrete logarithm problem) is assumed to be computationally hard for

5So g is a generator for a cyclic group of prime order q.

52 ZERO-KNOWLEDGE PROOFS

large enough q and p, the verifier cannot independently find x in polynomial
time, nor any other discrete logarithm the prover may send.

In the protocol, the prover first sends a random commitment t ≡ gα (mod p),
for some uniformly random 0 ≤ α < q. The verifier responds with a uniform
challenge c ∈ {0, 1}, and is hence a public-coin verifier. For the final message,
the prover answers with z ≡ α + c · x (mod q). The verifier can now check
whether gz ≡ t · yc (mod p), and accept the proof if so. This protocol can be
repeated multiple times to improve on the soundness. It is left as an exercise to
the reader to verify that the properties from section 4.1.1 and section 4.1.2 are
correctly satisfied.

As described in section 4.1.3, we can also turn this sigma protocol into a NIZK,
by choosing c = OR(t) as the output of a random oracle. Additionally, we can
bind this challenge to further “context”, such as a session identifier or a message,
to avoid the proof being replayed in a different context. To achieve this, one
can simply feed more input into the random oracle, and to bind the proof to a
message m, it suffices to let c = OR((t,m)), with some appropriate encoding of
the tuple (t,m) into a bit string. It can be proven that the resulting scheme is
in fact a secure signature scheme for public key y, private key x and message
m. Several commonly used signature schemes such as Schnorr signatures and
(EC)DSA are either based on this exact construction, or closely related.

4.2.2 Exponentiation is a Homomorphism

By taking an extra step in abstraction, it suddenly becomes easy to build upon
Schnorr’s protocol to build sigma protocols for a larger class of statements.
The key observation is that one can see the exponentiation gx (mod p) as
a homomorphism φ of (Zq,+) onto (Zp, ·), for which it is (assumed to
be) computationally hard to compute a preimage.6 If one replaces every
exponentiation in Schnorr’s protocol with an evaluation of the homomorphism,
it can be shown that this indeed makes for a ZKPoK that proves knowledge of
a preimage of y.

To briefly summarize, we can represent the resulting protocol visually.
6Here, a preimage of y is exactly any value x such that ϕ(x) = y.

ZERO-KNOWLEDGE PROOFS FROM MPC 53

φ : G1 → G2, y = φ(x)

prover

α← G1; t = φ(α)

z = α+ c · x

verifier

c← {0, 1}

φ(z) ?= t+ c · y

t

c

z

4.3 Zero-Knowledge Proofs from MPC

In the previous section, we discussed a construction for a proof system dealing
with a specific class of statements, discrete logarithms, and expanded it to
a wider range of statements. However, by itself, even that wider class of
homomorphism preimage statements remains rather limited in what it can
express. We would like to be able to construct proof systems in which even
more powerful statements can be proven. Some examples would be to prove the
correct evaluation of a program (referred to as verifiable computation), or to
prove knowledge of an encryption key — for example to transform it into a post-
quantum signature scheme. In this section, we first briefly revisit the discussion
from chapter 3 on how we want to represent such a general computation. Then
we discuss some constructions of this functionality by building upon MPC
protocols, the result of which are called MPC-in-the-Head (MPCitH or MitH)
schemes.

4.3.1 Proofs for General Computation

To shift our view from more specialized proofs, such as those in the preceding
section, towards more general proof systems that can show the correctness of
arbitrary computations, we first determine a useful structure for the statements
we now wish to prove. If we look at the statement y = φ(x) from before, and
abstract it a bit further, we could choose to represent any statement as y = C(x),
or with a more common choice of variables x = C(w). Here x is often referred to
as the statement, while w is the witness, and C can be any circuit to represent
an arbitrary piece of computation, just like we described in section 3.2.1. Like

54 ZERO-KNOWLEDGE PROOFS

before, once we start considering the concrete efficiency of specific instantiations
and protocols, these circuits could be further enhanced with special-purpose
gadgets, such as memory elements that can be read or written (known as the
oblivious RAM (ORAM) model). Of course, this shift in viewpoint loses the
homomorphic properties that enabled the earlier sigma protocol, so in the later
subsections, we shall explore some alternative constructions.

While this model may seem to be somewhat restrictive and to cover only
verifiable computation, it is not hard to apply it to a situation where the
proof is merely concerned with asserting that some properties hold for the
witness. If we let the output of the circuit x ∈ {0, 1} mean respectively whether
the required properties hold or not, the computation x = C(w) with publicly
known statement x = 0 correctly models this situation too. Additionally, if we
want the circuit to take both public inputs y and a private witness w, that is
x = C(y, w), this can be represented in two different ways. As a first option, we
can embed the public input y into the final circuit description, by defining the
new circuit C ′(w) = C(y, w). For the second choice, we can absorb y into both
the statement x and the witness w: C ′((w, y)) = (C(w), y) = (x, y), where the
presence of y in the public statement establishes the required consistence.

Example 4.3

Consider as a simple example of these manipulations the goal of proving
that some public element y in a ring R is invertible. To show this, the
prover can choose as witness w = y−1, which only exists if the statement
is indeed true. To express this in a circuit, one could choose to prove
y = C(w) = w−1, but this may be a costly computation to perform.
Rather, if we let the circuit simply verify that w · y = 1, we can express
it as 1 ?= C((w, y)) = w · y, requiring only a single multiplication to be
proven.

From a public-coin verifier proof system for such statements, we can, just
like before, construct non-interactive proof systems through the Fiat-Shamir
transform. Such NIZKs for one-way functions can in turn again be made into
signature schemes by additionally binding the proof to a message. Common
choices for the one-way functions include asymmetric primitives such as the
discrete logarithm from the previous section, and symmetric primitives such as
block ciphers like AES or hash functions. If the proof system can be constructed
from symmetric primitives — as is the case for the MPCitH schemes we will
discuss next — and the choice of one-way function is a symmetric primitive,
this constructs a signature scheme that solely depends on symmetric primitives,

ZERO-KNOWLEDGE PROOFS FROM MPC 55

and as such would be very plausibly quantum-resistant.7

4.3.2 Building on MPC

When considering interactive (ZK) proofs, it is natural to interpret it as a
computation performed by two parties, and hence that it can be seen as an
instance of two-party MPC (or 2PC). Indeed, given the above setting, one can
take an actively secure 2PC protocol that computes C(w) for some input w
held by the prover and call it an interactive proof. The privacy guarantees of
the protocol ensure that the zero-knowledge property holds, while soundness is
provided by the active security and completeness by the MPC protocol providing
evaluation for arbitrary circuits. Indeed, such constructions have been proposed
before using MPC protocols specialized to the 2PC setting, such as in [JKO13].

However, this general construction has several downsides. The first one is the
necessity for active security of the 2PC protocol, which comes at a significant
computational and communicational cost. The second downside arises from the
active role the verifier takes in the protocol evaluation. Since the 2PC protocol
makes no guarantees about the computation of the verifier, it cannot generically
enable a public-coin verifier, which in turn prevents straightforward translation
of the protocol into a NIZK.

Instead, in [IKOS07], Ishai et al. introduce a black-box transformation for any
— only passively secure — MPC protocol into a ZK proof system. The general
idea is that the prover can, without any interaction, simulate the execution of an
N -party MPC protocol and commit to the views of the parties — the view of a
party is a localized transcript of the MPC protocol that contains all the messages
sent and received by a single party. After receiving this commitment, the verifier
then chooses a (public-coin) challenge consisting of a privacy-preserving subset
of the MPC parties that the prover must open. If the prover is dishonest,
there necessarily exists a pair of parties with conflicting views, as otherwise
the MPC protocol would correspond to an honest execution and the statement
would be true. Depending on the exact access structure of the MPC protocol
and the number of parties, this results in a fixed probability of a dishonest
prover being caught that can, as before, be amplified through repetition. This
approach succeeds in mitigating both downsides of the 2PC approach, allowing
for the MPC protocol to be only secure against semi-honest adversaries and the
resulting ZK protocol to have a public-coin verifier.

7The Fiat-Shamir transform itself is known to occasionally have some issues in the
adaptation of the ROM to the quantum setting. There is however an alternative due to
Unruh [Unr15] that avoids these issues at a somewhat higher computational cost.

56 ZERO-KNOWLEDGE PROOFS

Proof by Computation The landscape of MPCitH proof systems can be
roughly divided into two families. The first of these families, with [KKW18] as
notable example, take the witness as input and compute the statement circuit
“forward”. This means that the simulated MPC protocol computes all gates in
the circuit in the usual order and reconstructs all outputs. With MPC protocols
built upon LSSS techniques, the linear gates are free of communication, and
hence virtually free in terms of cost towards the proof size as well. Non-linear
gates, such as multiplications, however, take more effort and communication to
compute, leading to a focus on efficiently preprocessing random multiplication
triples that can be used to minimize the cost of the actual multiplication gates.

Proof by Verification The second family, with notable representatives like
Banquet [BDK+21] and Limbo [DOT21], puts the burden of computing the
circuit’s wires on the prover — so outside the MPC protocol, — and then has
the MPC protocol perform a verification of the correctness of this computation.
The input to the MPC protocol now consists of the original witness, along
with all outputs of multiplication gates,8 which is commonly referred to as the
extended witness. The chief advantage of this is that all multiplications have
become, in a sense, “decoupled”, since the extended witness ensures that no
multiplication depends on the output of a previous multiplication any more.
All multiplications are now at the same depth in the (transformed) circuit.

With all multiplication and their results available simultaneously, the verification
MPC protocol can now perform a “batch” check of these multiplications and
ensure that all are correct at the same time. In most cases, this batch check
will, for performance reasons, be a probabilistic check. Due to the nature of
such probabilistic checks, the prover should not be allowed to know the used
randomness beforehand, so this should be provided by the verifier after receiving
a commitment to (the secret sharing of) the extended witness. Additionally,
the probabilistic nature of the check introduces an extra term to the soundness
error or cheating probability, as it is possible for the check to output a false
negative result9 with probability depending on the exact check and the field or
ring over which the check is performed.

MPCitH in Context

Finally, we provide some context on how MPCitH proof systems compare to
other contemporary proof systems (for arbitrary statements or circuits) based on

8This is sometimes also described as the prover “injecting” the results of multiplication
gates into the protocol, as if it were an oracle query.

9Negative here meaning that no wrong multiplications were found.

ZERO-KNOWLEDGE PROOFS FROM MPC 57

other techniques. Observe that the proof size for the protocols as outlined above
scales at least linearly with the number of multiplication gates in the statement
circuit. It turns out this is an asymptotic lower bound that can actually be
achieved, and the computational time taken by the prover and the verifier scale
linearly in the circuit size too. A line of work based on MPCitH, starting
with Ligero [AHIV17], achieves a sublinear proof size and verification time
(O
(√
|C|
)

), with a somewhat larger prover time. The asymptotic improvement
provides concrete advantages only once the circuit size becomes large enough,
so the linear MPCitH schemes generally still yield smaller proofs for small to
medium-sized circuits.

For proofs that need to be verified often, a verification time that scales linearly
with the circuit size may be restrictive. In the literature, schemes such as
SNARKs (Succinct Non-interactive Arguments of Knowledge) and STARKs
(Scalable, Transparent Arguments of Knowledge) have been proposed that
achieve proofs of constant size or scaling polylogarithmically in the circuit
size. These constructions can rely on a variety of hardness assumptions, with
both asymmetric and symmetric underlying primitives, resulting in schemes
that are not always quantum-resistant. The exact technical details of such
schemes are out of scope for this work, but we mention their existence as they
may be more commonly known among a general audience (with an interest
in cryptography). The improvement in proof size and verification time that
SNARKs and STARKS achieve comes, however, at a noticeable computational
cost to the prover. Where a concretely efficient prover is desirable, and the
circuits being proven do not become excessively large, a proof system based on
MPC-in-the-Head techniques will often be the right choice.

CHAPTER 5

MPC for Q2 Access Structures
over Rings and Fields

Robin Jadoul1 , Nigel P. Smart1 , and Barry Van Leeuwen1

1imec-COSIC, KU Leuven, Leuven, Belgium.

[JSv22] Robin Jadoul, Nigel P. Smart, and Barry van Leeuwen. MPC for Q2
access structures over rings and fields. In Riham AlTawy and Andreas
Hülsing, editors, SAC 2021, volume 13203 of LNCS, pages 131–151.
Springer, Cham, September / October 2022.

59

https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-3792-4042

60 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Abstract: We examine Multi-Party Computation protocols in the active-
security-with-abort setting for Q2 access structures over small and large finite
fields Fp and over rings Zpk . We give general protocols which work for any Q2
access structure which is realized by a multiplicative Extended Span Program.
We generalize a number of techniques and protocols from various papers and
compare the different methodologies. In particular, we examine the expected
communication cost per multiplication gate when the protocols are instantiated
with different access structures.

My contributions: Main author
I contributed the protocols in sections 4 through 7 and the performance
analysis, including the cases in appendix B.

5.1 Introduction . 62

5.2 Preliminaries . 68

5.2.1 Notation . 68

5.2.2 ℓ-Good Rings and the Schwartz-Zippel Lemma 68

5.2.3 Monotone and Extended Span Programs 69

5.2.4 Linear Secret Sharing Schemes Induced from MSPs and ESPs 72

5.2.5 Shamir over Rings, an Example: 74

5.2.6 Basic Multi-Party Computation Protocols 76

5.3 Generating an ESP from an MSP . 81

5.4 Opening Values to One Player and to All Players 85

5.4.1 Open to One . 86

5.4.2 Open to All . 88

5.5 Multiplication Check . 92

5.5.1 MultCheck1 . 92

5.5.2 MultCheck′
1 . 95

5.5.3 MultCheck2 . 97

5.5.4 MacCheck . 97

5.5.5 Summary . 100

5.6 Offline Preprocessing Protocols . 104

MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS 61

5.6.1 Comparing Actively Secure Offline Protocols 107

5.7 Complete Protocols . 110

5.A Proof of Theorem 5.1 . 117

5.B KRSW Multiplication Costs . 119

5.B.1 Replicated (3, 1) Sharing . 122

5.B.2 Replicated (5, 2) Sharing . 126

5.B.3 Replicated (10, 4) Sharing 129

5.B.4 Shamir (3, 1) for large p . 130

5.B.5 Shamir (5, 2) for large p . 132

5.B.6 Shamir (10, 4) for large p . 135

5.B.7 Shamir (3, 1) for Z2k . 139

5.B.8 Shamir (5, 2) for Z2k . 142

5.B.9 Shamir (10, 4) for Z2k . 148

62 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.1 Introduction

Secure multiparty computation (MPC) considers the situation where some set of
parties P come together to compute a function, each with their own inputs. The
security requirement is that no party is able to learn more than what the output
of this computation and their own input would allow them to. From another
perspective, this can be seen as a protocol that emulates a perfectly honest,
trusted third party that obtains each party’s input, performs the computation,
and outputs the result.

We can distinguish different security notions based on the power an adversary
can have. One axis along which to distinguish is whether the adversary is
active or passive. A passive adversary, also sometimes called honest but curious,
follows the protocol correctly, but tries to obtain more information from the
parts of the transcript of the execution it can see. An active adversary on the
other hand, is able to arbitrarily deviate from the protocol. In this situation
we either require that the honest parties still obtain the correct output from
the function, in which case we say that the protocol is robust, or we require
that the honest parties abort the protocol with overwhelming probability, in
which case we say the protocol is actively-secure-with-abort. In this chapter
we concentrate on protocols which are actively-secure-with-abort, as they are
relatively fast and practical in a large number of situations. Those readers who
are interested in robust active security should consult [ACD+20, CRX19].

Another axis to consider is how many or which subsets of parties the adversary
can corrupt. If we have n parties then a full threshold adversary is one who is
able to corrupt at most n− 1 parties. In such a situation we can achieve active-
security-with-abort, however this comes at the expense of a costly preprocessing
phase; see [DPSZ12, CDE+18] for the case of MPC over finite fields, or over
finite rings. Simpler protocols can be obtained if one restricts the adversary
to corrupt less parties. The classic restriction is that of threshold adversaries
who are allowed to corrupt up to t < n parties. When t < n/2 very efficient
MPC protocols can be realized, using a variety of methodologies to obtain
active-security-with-abort. The natural generalization of the threshold t < n/2
case is that of so-called Q2 adversary structure. A Q2 adversary structure is
one where the union of no two unqualified sets contains the whole set of players
P . For threshold structures the set of unqualified sets are all subsets of P of size
t, thus clearly no two sets can contain all of P when t < n/2. In this chapter we
will focus on Q2 access structures, again as they are relatively fast and practical
in a large number of situations.

A third axis to consider is the underlying field or ring over which the MPC
protocol is implemented. Traditionally the focus has been on MPC protocols

INTRODUCTION 63

over fields Fp, either large finite fields or small ones (in particular F2). However,
recently interest has shifted to also considering finite rings such as Zpk , and in
particular Z2k . In this setting sometimes, to obtain active security, underlying
protocols require the players to work in the extended ring Z2k+s , for some
security parameter s, and sometimes this is avoided. In this work we will
consider all such possibilities.

The final axis to consider is the precise protocol to use. Almost all practical
protocols which are actively-secure-with-abort for Q2 access structures divide
the protocol into two, and sometimes three stages. The first stage, called the
offline or pre-processing stage, is function independent and generates various
forms of correlated randomness amongst the parties. A second stage, called the
online stage, uses the pre-processing to compute the output of the function in a
secure manner. Sometimes a third stage, called the post-processing stage, is
required to ensure active-security.

The investigation of the combination of the second, third and fourth axes forms
the basis of this work. We generalize, where needed, prior works in order to
investigate as many prior protocol variants as possible, when instantiated over
finite rings or fields. We also generalize results from specific Q2 access structures
to generalQ2 access structures so as to obtain a complete smorgasbord of options.
We then analyse the different options, as it is unclear in which situation which
protocol is to be preferred (even in the case of finite fields).

Prior Related Work:

The majority of the literature has focused on the case where the underlying
arithmetic is a finite field. These are often based, for general finite fields and
Q2 access structures, on the classic multiplication protocol of Maurer [Mau06],
which works for an arbitrary multiplicative secret sharing scheme. In the case
of small finite fields and small numbers of parties, for example F2 and three
players it is common to utilize a multiplication protocol based on replicated
secret sharing, which originally appeared in the Sharemind software [BLW08].
The generalization of this specific multiplication protocol to arbitrary fields
and Q2-access structures implemented by replicated secret sharing [KRSW18],
the generalization to an arbitrary Q2 MSP was done in [SW19]. Both of these
multiplication protocols we shall refer to as KRSW. There is a third passively
secure multiplication protocol due to Damgård and Nielsen [DN07], which we
shall refer to as DN multiplication. The DN multiplication protocol is often
combined with a “king-paradigm” for opening a sharing, this reduces the total
amount of data sent at the expense of doubling the number of rounds. As round
complexity has often a bigger impact on execution time than data complexity

64 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

we assume no king paradigm is used in our protocols.1 Thus, before one even
considers the various protocols, one has (at least) three base passively secure
multiplication protocols to consider. In this work we will concentrate on these
three, Maurer or KRSW or DN. The one which is more efficient depends on the
precise context as we will show. From these, when using multiplication triples,
one can derive a third passively secure multiplication triple which we shall call
Beaver multiplication.

In more recent works, research has started to focus on MPC over finite rings,
such as Zpk , and Z2k in particular. For many cases, this choice is more natural,
as it more closely aligns with the bitwise representation of numbers found in
standard computing, and it can enable efficient high level operations such as
bit-decomposition (which are very useful in practice). For example, working
over Z264 would closely mimic the behaviour we have on most currently used
CPUs. The main problem with working with such rings is the presence of
zero-divisors.

A method to avoid the problem of zero-divisors in secret sharing schemes over
rings with zero-divisors was presented in the SPDZ2k protocol of [CDE+18].
Originally, this was presented in the case of a full threshold adversary structure,
but the basic trick used applies to any access structure. To avoid the problem of
zero divisors when working modulo 2k, the authors extend (for some protocols)
the secret sharing to a large modulus 2k+s, for some statistical security parameter
s. This idea was extended to the case of simple Q2 access structures, using a
replicated secret sharing schemes, in [EKO+20]. With some of the resulting
protocols for n = 3 and n = 4 parties implemented in the MP-SPDZ framework
[Kel20].

Across the many papers on Q2 MPC we identify three forms of actively secure
pre-processing used in the literature, which we generalize2 to an arbitrary
setting of pk. The first, which we denote by Offline1, uses a passively secure
multiplication protocol to obtain 2 ·N triples. These are then made actively
secure using the classic technique of sacrificing (which effectively uses internally
a Beaver multiplication), resulting in an output of N triples. This variant
has been used in a number of papers, e.g. [SW19]. A second variant, which
we denote by Offline2, generates N passively secure triples, and then checks
these are correct using a different checking procedure, based on the underlying
passively secure multiplication protocol of choice. This variant was used in

1Note the king-paradigm can be used not only in DN multiplication but in any protocol
which involves opening shares to all players, as long as suitable additional checks are performed
to ensure active security.

2There are a few others which we do not consider, as they do not easily fit into our protocol
descriptions below. For example the protocol of [ADEN19] looks at threshold structures and
uses the multiplication protocol of [DN07] using a king paradigm.

INTRODUCTION 65

[EKO+20].

A third offline variant, which we shall denote by Offline3, uses a passively secure
multiplication protocol to obtain triples in the offline phase. These are then
made actively secure using a cut-and-choose method, as opposed to sacrificing.
The reason for this is that they are interested in MPC over F2 and classical
sacrificing has a soundness error of one over the field size, and using cut-and-
choose allows one to perform an actively secure offline phase without needing to
pass to a ring of the form Z2k . This methodology was presented in [ABF+17],
and we shall also call this ABF pre-processing. This method seems very well
suited to situations when pk is small as it does not require extending the base
ring to Zpk+s .

From these one can derive a number of complete protocol variants. The first
variant, which we shall denote Protocol1, exploits the error-detecting properties
of a Q2 access structure to obtain a protocol which uses an actively secure
offline phase, and then uses an online phase based on the classical Beaver
multiplication method. Active-security-with-abort is achieved using the error
detecting properties of the underlying secret sharing scheme. This has been
considered in a number of papers in the case of threshold structures with
(n, t) = (3, 1), with the generalization to arbitrary Q2 structures in the case of
large finite fields being done in [SW19].

In [EKO+20] a three party protocol is presented which makes use of a different
methodology, which we generalize to arbitrary Q2 access structures. Here the
online phase is executed optimistically using a passively secure multiplication
protocol. The multiplications are then checked to be correct at the end of
the protocol using a post-processing phase. Depending on the method used
to perform this checking, we can either generate auxiliary, passively secure
triples in an offline phase, that can be used in a form of sacrificing in the
post-processing phase (which we dub Protocol2), or we can completely remove
the need for a preprocessing step (which we dub Protocol3).

The paper [ABF+17] also uses an optimistic passively secure online phase
with a post-processing step, but combines this with an actively secure offline
phase. By doing this the post-processing check is always checking possibly
incorrect multiplications (from the online phase) against known-to-be-correct
multiplications (from the offline phase). This means the post-processing check
can be done using a method which is close to that of classical sacrificing, without
the need to worry about the small field size. We call this variant Protocol4.

The final protocol variant we consider, which we dub Protocol5, comes from
[CGH+18]. In this paper the authors dispense with the offline phase, and instead
generate a shared MAC-key [α], a bit like in SPDZ, and evaluate the circuit on

66 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

both [x] and [α · x] using a passively secure multiplication protocol. Thus, in
some sense, the circuit is evaluated twice in the online phase. The correctness of
the evaluation is then established using the MAC-Check protocol from the SPDZ
protocol. Thus, there is a post-processing step, but it is relatively light-weight,
however the online phase is more expensive than other techniques.

We summarize these in five protocol variants in Table 5.1 as a means for the
reader to maintain a quick overview as they read the chapter.

Offline Phase Online Post-Processing
Protocol Passive Active Phase Heavy Light
Protocol1 - Beaver - -
Protocol2 - Passive -
Protocol3 - - Passive -
Protocol4 - Passive -
Protocol5 - - 2 × Passive -

Table 5.1: Summary of our five protocol variants. A “heavy” post-processing
phase denotes a phase akin to sacrificing, whereas a “light” post-processing
denotes a phase akin to SPDZ-like MAC checking. A Passive online phase refers
to an online phase using either Maurer or KRSW multiplication.

Our Contribution:

In this work we unify all these protocols; in prior work they may have been
presented for finite fields, or for rings of the form Z2k , or for specific access
structures. We consider, in all cases, the general case of MPC over rings of
the form Zpk ; i.e. where we consider both the case of k = 1, large k, small p,
and large p in one go. Our methodology applies to all multiplicative Q2 access
structures over such rings. To do so we utilize the language of Extended Span
Programs, ESPs, introduced in [Feh98]. This allows us to consider not only
replicated access structures, but also access structures coming from Galois Ring
constructions. By considering such Galois Ring constructions as an ESP, we
can maintain working over Zpk without the need to worry about complications
arising from the Galois Ring.

We first show how one can create the necessary ESPs for a specific access
structure, by constructing an associated MSP over the field Fp and then lifting
it to Zpk in a trivial manner. This preserves the access structure, but it does not
always preserve multiplicity (see [ACD+20] for a relatively contrived counter
example). For all “natural” MSPs one might encounter in practice (arising from
Shamir or Replicated secret sharing) the lifting does preserve multiplicity. In

INTRODUCTION 67

any case if the resulting ESP over Zpk is not multiplicative, it can be extended
to a multiplicative ESP in the standard manner3.

We show that the error-detection properties of [SW19] apply in this more
generalized context of finite rings. This allows us to reduce the communication
cost in our protocols for ESPs. Note the error-detection properties exploited
in [SW19] are the precise generalization to arbitrary Q2 MSPs of the classical
check for correctness performed in threshold systems for (n, t) = (3, 1) based on
replicated sharing.

We also show that the trick of modulus extension from Zpk to Zpk+s also works
in general, and we combine it with other tricks. For example, we use Schwartz-
Zippel over Galois rings to allow greater batching, and modulus extension even
in the case of checking over finite fields. Indeed, we show that one can also
utilize modulus extension to avoid the problems with sacrificing when k = 1 and
p is small. However, this comes at the expense of requiring to work modulo pk+s

and not working modulo pk, which may be a problem in some instances (for
example in the interesting case of pk = 2). Thus, our multiplication checking
procedures in Section 5.5 generalize a number of earlier results, and unify
various approaches. Note, that depending on the underlying protocol choice
such modulus extensions may not be needed.

We finally examine the smorgasbord of options for the offline, online and post-
processing which we outlined above in this general context and examine the
various benefits and tradeoffs which result. Our cost metrics in this matter are
the total number of rounds of communication, as well as the total amount of
data sent per multiplication4. We consider the case where the user is interested
in minimizing the total cost (i.e. the combined cost of all three phases), as well
as the case where the user is interested in minimizing the costs of the online and
post-processing phases only (i.e. where the user assumes that the offline phase
can be done overnight for example and is not an important consideration).

Chapter Outline:

In Section 5.2 we summarize some basic definitions and work from other papers
which we will utilize. In Section 5.3 we explain how to utilize an MSP defined
over a finite field Fp which computes a given access structure, as a way of doing
the same operation over a finite ring Zpk , for the same prime p. In Section 5.4
we generalize the results on Q2 MSPs over Fp of [SW19], to ESPs over Zpk .

3This is a standard result for MSPs over fields, but we have seen no proof for ESPs over
finite rings, so we present this construction in an Appendix.

4Note, as MPC protocols do not usually work in practice over arithmetic circuits this is
only an approximation of the cost of the various options.

68 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

This enables us to open values to players, and ensure the opened values are
“correct”. Then in Section 5.5 we examine various methodologies for checking
whether multiplication triples are correct or not. In this section we generalize a
number of prior checking procedures to the full generality of working modulo
Zpk . Finally, in Section 5.6 (resp. Section 5.7) we examine the various offline
(resp. complete) protocols and do a comparison.

5.2 Preliminaries

5.2.1 Notation

We let F denote a general finite field, and R denote a general finite commutative
ring. We let Fp denote the specific finite field of p elements, and Zpk denote the
ring of integers modulo pk. For two sets X,Y we write X ⊂ Y if X is a proper
subset and X ⊆ Y if X is not necessarily proper. For a set B, we denote by
a← B the process of drawing a from B with a uniform distribution on the set
B. For a probabilistic algorithm A, we denote by a← A the process of assigning
a the output of algorithm A; with the underlying probability distribution being
determined by the random coins of A.

For a vector x we let x(i) denote it ith component, and for two vectors x and y
of the same length we let ⟨x,y⟩ denote the dot-product, unless otherwise noted.
We let Mn×m(K), where K = F or K = R, be the set of all matrices with n
rows and m columns. For M ∈Mn×m(K) denote the transpose by MT . We let
ker(M) to denote the subspace of Km which maps to 0 under left multiplication
by M , and we let Im(M) to be the subspace of Kn which is the image of all
elements in Kn upon left multiplication by M . If V is a subspace of Kr for
some r, we let V ⊥ = {w ∈ Kr | ∀v ∈ V : ⟨w,v⟩ = 0} denote the orthogonal
complement. Moreover, we let 0 and 1 be the all zero and all one vector of
appropriate dimension (defined by the context unless explicitly specified) and let
ei be the ith canonical basis vector, that is e(j)

i = δi,j where δ is the Kronecker
Delta.

5.2.2 ℓ-Good Rings and the Schwartz-Zippel Lemma

Following Fehr [Feh98], a ring R is said to be ℓ-good if there is a set S of ℓ
units ωi ∈ R∗ such that

ωi − ωj ∈ R∗ for all ωi, ωj ∈ S such that ωi ̸= ωj .

PRELIMINARIES 69

It is known that a ring R is ℓ-good if and only if ℓ ≤ |R/m1| − 1, where m1
is the largest maximal ideal contained in R. If this is not the case then R
can be extended to an ℓ-good Galois ring, [Feh98]. In particular if R is a ring
Zpk then one can select a polynomial F (X) ∈ Fp[X] which is irreducible (over
Fp[X]) and of degree dℓ such that ℓ ≤ pdℓ − 1. Then one forms the Galois ring
R = Zpk [X]/F (X), which will be ℓ-good, with a set S being the embedding of
the units of Fp[X]/F (X) into the ring R.

This Galois ring extension R allows us to define a variant of the Schwartz-Zippel
Lemma; we present here a univariate version as that is all we will need, a
multivariate version follows by the standard argument.

Lemma 5.1: Schwartz-Zippel Lemma over Rings

Let F ∈ R[X] denote a non-zero polynomial of degree d. Let R denote
a Galois ring extension of R which is ℓ-good, with the set S of size ℓ as
above. If one selects r ∈ S uniformly at random then we have

Pr[F (r) = 0] ≤ d

ℓ
.

Proof. We prove the result by showing that the polynomial F (X) can have at
most d roots in S. The proof follows by a simple induction on d. The case of
d = 0, i.e. constant polynomials is trivial.

Now assume that all polynomials of degree d − 1 have at most d − 1 roots
in S ⊂ R. Consider a polynomial F (X) of degree d and assume it has d + 1
distinct roots, ω1, . . . , ωd+1 ∈ S. We can then write F (X) = (X−ωd+1) ·G(X),
where G(X) is of degree d. Now all ωi with i ≠ d+ 1 are roots of F (X), but by
assumption we have ωi−ωd+1 is a unit in R. This means that ωi with i ≠ d+ 1
must be a root of G(X), which contradicts the assumption that G(X) has at
most d roots.

5.2.3 Monotone and Extended Span Programs

As is standard we can associate linear secret sharing schemes over fields with
Monotone Span Programs. In [Feh98] these definitions are extended to linear
secret sharing schemes over finite rings, such as Zpk , with the associated structure
being called an Extended Span Program. We recap on the relevant definitions
here.

70 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Access Structures:

The set of parties that the adversary can corrupt is drawn from an access
structure (Γ,∆). The set Γ is the set of all qualified sets, whilst ∆ is the set of
all unqualified sets. The access/adversary structure is assumed to be monotone,
i.e. if X ⊂ X ′ and X ∈ Γ, then X ′ ∈ Γ and if X ⊂ X ′ and X ′ ∈ ∆ then X ∈ ∆,
and we assume Γ ∩ ∆ = ∅. We are only interested in this chapter in access
structures which are Q2:

Definition 5.1: Q2 Access Structure

Let P = {P1, . . . , Pn} be a set of parties, with access structure (Γ,∆),
then (Γ,∆) is said to be a Q2 access structure if

P ̸= A ∪B for all A,B ∈ ∆.

In other words: An access structure (Γ,∆) is Q2, if for any two sets in ∆ the
union of those sets does not cover P. An access structure is called complete if
for any Q ∈ Γ it holds that P\Q ∈ ∆ and vice versa. In this chapter we will
only consider complete access structures.

Monotone Span Programs over Fields:

Using this notation, the definition of a Monotone Span Program follows.

Definition 5.2: MSP

A Monotone Span Program (MSP), denoted M, is a quadruple
(F,M, ε, φ), where F is a field, M ∈ Mm×d(F) is a full-rank matrix
for some m and d ≤ m, ε ∈ Fd is an arbitrary non-zero vector called the
target vector, and φ : [m]→ P is a surjective map of the rows of M to
the parties in P. The size of M is defined to be m, the number of rows
of the matrix M .

Given a set of parties S ⊆ P, the submatrix MS is the matrix whose rows are
indexed by the set {i ∈ [m] : φ(i) ∈ S}. Similarly, sS is the vector whose rows
are indexed by the same set. We also define the supp-mapping, which maps the
rows of a matrix M to a player in P . Formally this is defined as supp : Fd → 2[d]

with s 7→ {i ∈ [d] : s(i) ̸= 0}.

PRELIMINARIES 71

Definition 5.3: MSP computing (Γ,∆)

An MSP M is then said to compute an access structure (Γ,∆) if for
every set A ⊂ 2P it holds that

A ∈ Γ⇒ ε ∈ Im(MT
A), (5.1)

A /∈ Γ⇒ ε /∈ Im(MT
A). (5.2)

Note that this could be presented as a single if and only if condition, but
to emphasize the difference with the generalization to rings, we present the
condition in two equations. Also note that, an equivalent formulation for
requirement (5.2) is the following:

A /∈ Γ⇒ ∃k ∈ ker(MA) s.t. ⟨ε,k⟩ ≠ 0

Extended Span Programs over Rings:

In this chapter we are not only interested in the Monotone Span Programs,
but also their extensions to finite rings, which are known as Extended Span
Programs, [Feh98]. An Extended Span Program (ESP) over a ring R is a tuple
M = (R,M, ε, φ) where M ∈Mm×d(R) is a full-rank matrix for some m and
d ≤ m, ε ∈ Rd is an arbitrary non-zero vector called the target vector, and
φ : [m] → P is a surjective map of the rows of M to the parties in P. The
analogue of Definition 5.3 is

Definition 5.4: ESP computing (Γ,∆)

An ESP M is said to compute an access structure (Γ,∆) if for every set
A ⊂ 2P it holds that

A ∈ Γ⇒ ε ∈ Im(MT
A), (5.3)

A /∈ Γ⇒ ∃v ∈ ker(MA) ⊂ Rd : ⟨ε,v⟩ ∈ R∗. (5.4)

Note that, (5.4) is a stronger assumption than the corresponding requirement for
an MSP in the ESP case, namely (5.2). To see this note that if ε = (ε1, ε2, . . . , εd)
with εi /∈ R∗ then there are situations in which A /∈ Γ, however ε ∈ Im(MT

A).

For the rest of this chapter we will only be considering MSPs over finite fields
Fp, or ESPs over the finite ring Zpk . Let P = {P1, . . . , Pn} be the set of parties
involved in our protocols. To implement our MPC functionality over Zpk we will

72 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

utilize an ESP (Zpk ,M , ε, φ) given by a matrix M ∈ Zm×d, such that M = M
(mod p) (i.e. the entries of M are in the range [0, . . . , p)), such that to share
a value x ∈ Zpk one generates a vector k ∈ Zd

pk such that ⟨ε,k⟩ = x (mod pk)
and then compute the share values s = M · k. The entries of s are passed to
the players depending on the value of the function φ : [m] → P. i.e. player
Pi gets s(j) if φ(j) = i. Such a sharing x ∈ Zpk of a value will be denoted by
[x]k, note the subscript k which will be used to keep track of which ring we are
considering at any given point.

5.2.4 Linear Secret Sharing Schemes Induced from MSPs and
ESPs

When you have a Monotone/Extended Span Program it induces a Linear Secret
Sharing Scheme (LSSS) using the method in Figure 5.1. Recombination works
for qualified sets A ∈ Γ, since if A is qualified there exists a recombination
vector λA such that MT

A · λA = ε, by requirement (5.3) of the MSP. Hence,

⟨λA, sA⟩ = ⟨λ, s⟩ = ⟨λ,M · x⟩ = ⟨MT · λ,x⟩ = ⟨ε,x⟩ = s.

Conversely, if A /∈ Γ then A is unqualified, hence by requirement (5.2) of the
MSP, or requirement (5.4) of the ESP, there is no λ that allows for reconstruction.
That reconstruction vectors exist follows from the following two Lemmas, since
Z is a Euclidean domain, and so Lemma 5.3 implies that we can solve linear
equations in the quotient rings Zpk .

Lemma 5.2

There exists an algorithm which solves linear equations, ⟨a,x⟩ = b, for
any Euclidean domain D. Moreover, there exists an algorithm that
solves linear equation systems M · x = b for any matrix M ∈Mn×m(D).

Lemma 5.3

If linear equation systems can be solved in the ring R, then they can
also be solved in the rings R [X] and R/I for all finitely generated ideals
I of R.

We note that the reconstruction step 2 can be relatively expensive for large
MSPs, i.e. those with large m. Thus, it is common to only send “just enough”
information to each player in order to allow reconstruction. How this is done in
a manner which prevents active attacks is discussed in Section 5.4.

PRELIMINARIES 73

Induced LSSS from an MSP/ESP

Given a Monotone/Extended Span Program, M = {Zpk ,M, ε, φ} and
a secret s, distribution and reconstruction for the associated secret
sharing scheme are as follows:

Distribution:

1. Sample x← Zd
pk under the condition that ⟨x, ε⟩ = s.

2. Compute s = M ·x, such that s = (s1s2 . . . sn) and distribute each
si to the party indicated by φ(i), such that each party Pj has the
vector

sPj
=
{
si φ(i) = Pj

0 otherwise

Reconstruction: Let A ∈ Γ be a qualified set of players:

1. Define λA such that MT
A · λA = ε.

2. Each player Pi ∈ A sends their shares to all other Pj ∈ A and
computes sA =

∑
Pi∈A sPi .

3. Compute s∗ = ⟨sQ, λQ⟩.

4. Return s∗.

Figure 5.1: Induced LSSS from a Monotone/Extended Span Program.

Multiplicative Linear Secret Sharing Scheme

A secret sharing scheme induced from a MSP/ESP is by definition linear, i.e.
one can compute arbitrary linear functions of secret shared values without
interaction. Q2 access structures are interesting as they allow us to also
multiply secret shared values, but using interaction, if the underlying LSSS is
multiplicative.

Recall a vector s = (si) = M · k is some sharing of a value s if we have that
⟨ε,k⟩ = s, with the shares distributed to party Pi being si = (sj)φ(j)=i. We let
the total number of shares held by party Pi be given by ni. The local Schur
product of two sharings xi and yi of values x and y for party Pi are the n2

i

terms given by xi ⊗ yi, i.e. the terms pi,j = x(v)
i · y(v′)

i for j = 1, . . . , n2
i and

v, v′ range over all values for which φ(v) = φ(v′) = i. An MSP is said to be

74 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

multiplicative if there are constants µi,j for i = 1, . . . , n and j = 1, . . . , n2
i such

that
x · y =

∑
i,j

µi,j · pi,j (5.5)

for all valid sharings of x and y. By abuse of notation we shall refer to the
MSP/ESP being multiplicative, and not just the induced LSSS.

Many “natural” MSPs/ESPs computing Q2 access structures are multiplicative,
i.e. those arising from Shamir secret sharing, or replicated sharing. It is well
known, see [CDM00], that when you have a non-multiplicative MSP over a field
that computes a Q2 access structure then it can be made multiplicative with
only a small expansion of the dimensions of M . In Appendix 5.A we prove the
following theorem, generalizing this result to ESPs over Zpk ,

Theorem 5.1

There exists an algorithm which, on input of a non-multiplicative ESPM
over Zpk computing a Q2 access structure (Γ,∆) outputs a multiplicative
ESP M′ computing Γ and of size at most 4 · |M|. This algorithm is
effective if ker(MT) admits a basis.

5.2.5 Shamir over Rings, an Example:

To help solidify ideas we present here the standard construction of Shamir secret
sharing over a small finite field (say F2), which is achieved via extension to a
finite field F2dn , where n ≤ 2dn − 1 We then show how this can be interpreted
as an MSP over the finite field F2, where we only want to share elements in F2
and not F2dn . By extending scalars we then obtain an ESP over the ring Z2k .

Consider first constructing an analogue of Shamir sharing for three players and
threshold one5 over the finite field F2, i.e. (n, t) = (3, 1). The problem with
Shamir over F2, is that we do not have enough elements to interpolate via n
evaluations. Thus, we need to extend the base field by a degree dn extension so
that it is n-good (see [Feh98]), Since n = 3 = 22−1 = pd3 −1 we simply need to
take an extension of degree two. Thus, we set K = F2[X]/(X2 +X + 1) and we
represent elements in K via a0 + a1 · θ for a variable θ such that θ2 + θ + 1 = 0.
The set S being the set {1, θ, θ + 1}.

5The astute reader will be asking why bother? A simpler implementation in this case
comes from replicated sharing. We give this example since, for large values of n and t, the
construction via extensions fields/rings is more efficient than replicated sharing.

PRELIMINARIES 75

We now perform the standard Shamir sharing technique for t = 1. To share a
secret s = s0+s1·θ ∈ K, we select a polynomial f(X) = (s0+s1·θ)+(a0+a1·θ)·X,
where a0, a1 ∈ F2 and generate the shares by evaluating f(X) at the elements in
S. We can then express this as an MSP over F2 by treating the coefficients of θ
as separate shares. The MSP can be simplified a little, as we are only interested
in sharings of elements in F2; thus we will always have s1 = 0. Interpolation
is then always possible via Lagrange interpolation as the denominators in the
Lagrange coefficients, ωi − ωj , are always invertible via the choice of the set S.

Thus shares for player one, corresponding to the element ω1 = 1 ∈ S are
{ s0+a0, a1 }; the shares for player two, corresponding to the element ω2 = θ ∈ S
are { s0 + a1, a0 + a1 }; whilst the shares for player three, corresponding to
the element ω3 = θ + 1 ∈ S are { s0 + a0 + a1, a0 }. We can then write the
secret sharing scheme down as an MSP over F2, as M2 = (F2,M, e1, φ), where
the matrix M is given by

M =

1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
0 1 0

 ,

and φ(i) = ⌈i/2⌉.

The self same construction, but starting with the ring Zpk will create the
ESP M = (Zpk ,M, e1, φ). We see that we can consider M2 as the reduction
modulo 2 of the ESP M, or we can consider M as the “lift” (by extension of
scalars) of the MSP M2. Both compute the same access structure, and both
are multiplicative.

This method of forming ESPs over rings Zpk for an access structure Γ, by first
forming an MSP Mp over the field Fp for the same access structure Γ and
then “lifting” the MSP to the ESP over the required ring Zpk , will be our
method for constructing ESPs in this work. We show later, Section 5.3, that
this lifting always works in terms of the access structure, but we cannot show
that the associated lift is always multiplicative (we conjecture that it is for all
“interesting” in practice MSPs/ESPs).

Note, by generating the MSP via Galois ring extensions, but then restricting
the shared value to the base ring, and also encoding all the ring extension
arithmetic within the matrix M , means we can dispense with considering Galois
rings as soon as the MSP is constructed. This avoids the complexity mentioned
in [ACD+19][Section 3.4] of us never needing to worry about a reconstructed
value is not in the base ring.

76 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.2.6 Basic Multi-Party Computation Protocols

The general MPC functionality that we aim to implement is given in Figure 5.2.
We assume the secret sharing scheme defined by the ESP is multiplicative, and
hence the underlying secret sharing scheme is Q2. For example purposes, the
reader may want to consider three party replicated sharing for the threshold
structure of (n, t) = (3, 1). Here a value s is shared by s = s1 + s2 + s3, with
party Pi holding the two values {s1, s2, s3} \ {si}, or our earlier Shamir based
example for the same access structure.

Modular reduction is consistent with the opening procedure, in the sense that
if 0 ≤ k′ ≤ k then the operation of opening a sharing [x]k and taking the
reduction modulo pk′ commutes with the operation of reducing all the share
values themselves modulo pk′ . We denote the latter operation by [x]k′ ← [x]k
(mod pk′). That the operation commutes follows from our definition of the ESP
above.

There are some operations on secret shared values which we can immediately
define. We summarize them here as they will be utilized throughout. Many
protocols will make use of a cryptographic hash function H : {0, 1}∗ → {0, 1}|H|
which we will model as a random oracle. The interface (API) for the hash
function H will be the standard one provided by cryptographic hash functions
in practice; as given in Figure 5.3

Commitment and Decommitment

We can implement the ideal functionality FCommit given in Figure 5.4 using the
protocol given in Figure 5.5, which utilizes the hash function/random oracle H.

Agreeing on a random value:

In many instances we want to agree a random value from a domain D. This is
easily done by each party Pi committing to a random bit string ri, using the
functionality FCommit, and then the committed values are opened. A seed is
then produced via r = r1 ⊕ . . . ⊕ rn, and finally the seed is used to generate
random elements from D using a PRF with co-domain D. We shall denote this
functionality by FAgreeRandom(D) in Figure 5.6

PRELIMINARIES 77

Functionality FOnline

The functionality runs with parties P1, . . . , Pn and an ideal adversary.
Let A be the set of corrupt parties. Given a set I of valid identifiers, all
values are stored in the form (varid, x), where varid ∈ I.

Initialize: On input (Init, p, k) from all parties, with p a prime and k
a positive integer, the functionality stores pk. The adversary is
assumed to have statically corrupted a subset A of the parties.

Input: This takes input (Input, Pi, varid, x) from Pi, with x ∈ Zpk ,
and (input, Pi, varid, ?) from all other parties, with varid a fresh
identifier. If the varid’s are the same the functionality stores
(varid, x), otherwise it aborts.

Add: On command (Add, varid1, varid2, varid3) from all parties:

1. If varid1, varid2 are not present in memory or varid3 is then
the functionality aborts.

2. The functionality retrieves (varid1, x), (varid2, y) and stores
(varid3, x+ y).

Multiply: On input (Multiply, varid1, varid2, varid3) from all parties:

1. If varid1, varid2 are not present in memory or varid3 is then
the functionality aborts.

2. The functionality retrieves (varid1, x), (varid2, y) and stores
(varid3, x · y).

Output: On input (Output, varid, i) from all parties (if varid is present
in memory),

1. The functionality retrieves (varid, y).
2. If i = 0 and A ≠ ∅ then the functionality outputs y to the

adversary, otherwise it outputs ⊥ to the adversary.
3. The functionality waits for an input from the adversary.
4. If this input is Deliver then y is output to all players if i = 0,

or y is output to player i if i ̸= 0.
5. If the adversarial input is not equal to Deliver then abort.

Figure 5.2: The ideal functionality for MPC with Abort over Zpk

78 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Interface for a Cryptographic Hash Function H

Let H : {0, 1}∗ −→ {0, 1}|H| be a cryptographic hash function, then the
H function object has three member functions associated with it:

• H.Init(): Initializes the hash function.

• H.Update(s): Updates the hash function’s internal state with the
bit-vector s.

• H.Out(): Evaluates the hash function and outputs the result.

Figure 5.3: Interface for a Cryptographic Hash Function H

The Ideal Functionality FCommit

Commit: On input (Commit, v, i, τv) by Pi or the adversary on his
behalf (if Pi is corrupt), where v is either in a specific domain or
⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all players and
adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi

is corrupt), the ideal functionality outputs (v, i, τv) to all players
and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi

is corrupt, the functionality outputs (⊥, i, τv) to all players.

Figure 5.4: The Ideal Functionality for Commitments

Sharing a value:

If party Pi wants to share a value s it uniformly at random selects k ∈ Zk
pk

such that ⟨ε,k⟩ = x (mod pk), computes s = M · k and sends s(j) to player i if
φ(j) = i. We will denote this operation in our protocols by [x]k ← Share(x, i, k).

Linear Operations:

Linear operations on secret shared values can be performed by applying the
same linear operation to the shared values; where we interpret a constant value

PRELIMINARIES 79

The Protocol ΠCommit

Commit:

1. In order to commit to v, Pi sets o← v||r, where r is chosen
uniformly in a determined domain, and queries the Random
Oracle H to get c← H(o).

2. Player Pi then broadcasts (c, i, τv), where τv represents a
handle for the commitment.

Open:

1. In order to open a commitment (c, i, τv), where c = H(v||r),
player Pi broadcasts (o = v||r, i, τv).

2. All players call H on o and check whether H(o) = c. Players
accept if and only if this check passes.

Figure 5.5: The Protocol for Commitments.

Ideal Functionality FAgreeRandom(D)

On input AgreeRandom(cnt) from all parties, if the counter value is the
same for all parties and has not been used before, the functionality
samples a value a← D, and sends a to all parties.

Figure 5.6: Ideal Functionality FAgreeRandom(D)

c as shared by the vector c · [1]k = M · kone where kone is a fixed vector such
that ⟨ε,kone⟩ = 1.

Sharing a random value:

If the number of maximally unqualified sets is small then this can be done, in a
computationally secure non-interactive manner, by pre-distributing secret keys
corresponding to the access structure and using a standard Pseudo-Random-
Secret-Sharing (PRSS) construction to enable each party to obtain a random
value [CDI05]. If the number of such sets if large then one can obtain an
interactive, information theoretically secure manner, by each party Pi generating

80 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

ri ∈ Zpk , and then executing [ri]k ← Share(ri, i, k). The resulting shared value
being

∑
[ri]k. We denote this functionality by FPRSS, which is given in Figure 5.7

Ideal Functionality FPRSS(m)

On input PRSS(cnt) from all parties, if the counter value is the same
for all parties and has not been used before, the functionality samples a
value a← Zpk , computes a sharing [a]k and sends the respected share
values to the designated player.

Figure 5.7: Ideal Functionality FPRSS(m)

Passively Secure Multiplication:

We will utilize four forms of passively multiplication routine; all of which
are actively secure up to an additive attack. The first is classic Beaver
multiplication. This requires one round of interaction, requires the consumption
of a multiplication triple, and requires two executions of OpenToAll (see later
for how we define this protocol, which implements the Output([x]k, 0) operation
in the functionality in Figure 5.2). The protocol is passively secure if the
underlying triple is only passively secure, and actively secure otherwise6. We
refer to this protocol as [z]k ← BeaverMult([x]k, [y]k).

The second is the classic passively secure multiply-and-reshare operation (which
we call Maurer-multiplication as it seems to have been first given in full generality
in [Mau06]). This requires one round of communication, no multiplication
triples, and requires each player to execute Share on their local multiplication.
This protocol is only passively secure. We refer to this protocol as [z]k ←
MaurerMult([x]k, [y]k).

The third technique is the method of [SW19, KRSW18] which is the
generalization to arbitrary multiplicative LSSS of the classic multiplication
algorithm for replicated (n, t) = (3, 1) sharing. The paper [KRSW18] gives this
for arbitrary replicated MSPs, whilst [SW19] generalizes this to an arbitrary
Q2 multiplicative MSP. Again one round of interaction is required and no
multiplication triples are consumed. The protocol requires access to a (modified)
form of PRSS/PRZS protocol, and the amount of data sent depends highly
on the specific secret sharing scheme being executed. This protocol is only
passively secure. We refer to this protocol as [z]k ← KRSWMult([x]k, [y]k).

6By which we mean that the triple is guaranteed to be correct

GENERATING AN ESP FROM AN MSP 81

Our fourth and final technique is a generalization of [DN07] from honest-majority
Shamir secret sharing to the setting of an arbitrary Q2 ESP. It relies on pairs of
the form ([r]k, ⟨r⟩), where ⟨r⟩ represents an additive sharing of r. Similarly to
KRSWMult, the protocol requires access to a PRSS and PRZS protocol. Under
certain assumptions, we can generate these pairs silently and perform a single
multiplication with n · (n − 1) ring elements of communication and a single
round of communication. Contrary to the original design of [DN07], we do not
use the king paradigm (which would make the communication be only linear
in the number of players), as this doubles the number of rounds needed for a
multiplication. We refer to this protocol as [z]k ← DNMult([x]k, [y]k).

To perform an execution of our DNMult protocol for an arbitrary Q2 ESP, we
proceed in two phases: first a pair ([r]k, ⟨r⟩), is (silently) generated, afterwards
it is used to transfer an additive sharing of the product (obtained via the usual
local Schur multiplication of shares) back into a Q2 sharing, similar to the
high-level approach of KRSWMult. To generate a pair, we assume the PRSS
and PRZS protocols can be executed without communication. First, generate
[r]k using the PRSS, such that each player Pi holds a vector of shares ri and
choose a fixed reconstruction vector λ such that

r =
n∑

i=1

ni∑
j=1

λi,j · r(j)
i .

Also generate an additive sharing of zero ⟨t⟩ ← PRZS. Each player can then
locally compute the additive share ra

i =
∑ni

j=1 λi,j · r(j)
i + ti. Note that since λ

is a reconstruction vector, we have that the ra
i form an additive sharing ⟨r⟩.

In the online phase, given the sharings [x]k and [y]k, the players can locally
compute an additive sharing ⟨x · y⟩ thanks to the multiplicative property of the
ESP. Then a pair ([r]k, ⟨r⟩) is consumed to open the value v ← OpenToAll(⟨r⟩−
⟨x ·y⟩). Note that we cannot rely on the properties of a Q2 ESP to optimize this
as we are opening an additive sharing, so we simply have each player broadcast
their own share. Given v, the players can then locally compute [x · y]=[r]k − v.

If we refer to either MaurerMult, KRSWMult or DNMult (our three passively
secure multiplication protocols which do not utilize pre-processed triples),
without defining precisely which one, we will write [z]k ← PassMult([x]k, [y]k).

5.3 Generating an ESP from an MSP

In the sections above we have described how an ESP can be defined, however it
is in general not a simple task to define an ESP for a general access structure.

82 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

One of the reasons being that dealing with zero-divisors can be tricky and the
initial choices of matrix, mapping, and target vector are not as natural as when
one considers MSPs.

However, there is a natural construction to generate an ESP over Zpk for a
given access structure (Γ,∆). First generate an MSPMp over Fp for the access
structure (Γ,∆), and then “lift” this to an ESP M over Zpk . Indeed, one can
simply think of Mp as defining M exactly. This is exactly what we did in our
previous Shamir sharing example, and it was used in [ACD+20] in a similar
context (but in the language of lifting the associated code and not the MSP).
That this trivial methodology always works is guaranteed by the following
theorem.

Theorem 5.2

Let Mp = (Fp,Mp, εp, φ) be a Monotone Span Program computing
the access structure (Γp,∆p) over Fp. Let M =

(
Zpk ,M, ε, φ

)
be any

Extended Span Program computing an access structure (Γ,∆) over Zpk

such that Mp = M (mod p) and εp = ε (mod p). Then Γ = Γp (and
hence also ∆ = ∆p).

Proof. To show that Γ = Γp we show that the conditions on an ESP and MSP
are equivalent on the qualified sets. Let Q be such a qualified set, then we show
that

Q ∈ Γ⇔ Q ∈ Γp,

Q /∈ Γ⇔ Q /∈ Γp.

By contraposition, it is sufficient to show the implications from Γ to Γp.

Q ∈ Γ⇒ Q ∈ Γp: Let Q ∈ Γ, then by the first condition on the ESP it holds
that ε ∈ Im(MT

Q), so there exists a c ∈ Zr
pk such that

c ·MT
Q =

r∑
i=1

ci ·mi = ε,

where mi is the i’th column vector of MT
Q . Hence, by reduction modulo p:

εp ≡ ε mod p ≡
r∑

i=1
ci ·mi mod p ≡

r∑
i=1

(ci ·mi mod p) ≡ cp · (Mp)T
Q ,

where c(i)
p = ci mod p. Therefore, εp ∈ Im

(
(Mp)T

Q

)
and by the contrapositive

of the second condition on the MSP this means that Q ∈ Γp.

GENERATING AN ESP FROM AN MSP 83

Q /∈ Γ⇒ Q /∈ Γp: Reducing the second condition on an ESP modulo p does not
change the condition as a contains at least one entry which is a unit, therefore
⟨a, ε⟩ ∈ Z∗pk ⇒ ⟨ap, εp⟩ ∈ Z∗p and ap ∈ ker

(
(Mp)T

Q

)
. By the fundamental

theorem of linear algebra

ker
(

(Mp)Q

)
= Im

(
(Mp)T

Q

)⊥
,

so for all bp ∈ Im
(

(Mp)T
Q

)
: ⟨ap,bp⟩ = 0 and as ⟨ap, εp⟩ ≠ 0 we have that

εp /∈ Im
(

(Mp)T
Q

)
. By the contrapositive to the first condition of the MSP this

means Q /∈ Γp.

Using this result we can easily construct ESPs for any Q2 access structure; and
we can transfer efficient constructions of MSPs from Fp to Zpk in a straight
forward fashion. The question that arises as to whether the resulting ESP over
Zpk is multiplicative if the original MSP over Fp was multiplicative.

Given an Mp = (Fp,Mp, εp, φ), i.e. Mp ∈ Fm×d
p , εp ∈ Fd

p and φ : [m]→ P. We
define the “natural lift” ofMp to the ring Zpk to be the ESPM = (Zpk ,M, ε, φ)
where M = Mp and ε = εp over the integers. Recall an ESP is multiplicative
if one can find a solution to equation (5.5) modulo pk. It is clear that if M is
multiplicative then so isMp, the converse may not necessarily hold, although for
all “natural” constructions which would seem to arise in practical applications
this is indeed so. However, this is not true in general (see [ACD+20] for a counter
example). If one is so-unlucky to construct an ESP which is not multiplicative
one can always extend it to a multiplicative one using the method of Theorem
5.1.

To concretely see why Mp can be multiplicative but M may not be, we write
x = ⟨ε,kx⟩ and y = ⟨ε,ky⟩ for some vectors kx and ky, where we think of the
values in kx and ky as 2 ·k variables over the integers. Again letting the number
of shares held by Pi be ni, then the local Schur product for player Pi is a sum
of terms pi,j = s(v)

x · s(v′)
y for j = 1, . . . , n2

i and v, v′ range over all values for
which φ(v) = φ(v′) = i. The terms pi,j are (over the integers) equal to the
product of two linear forms in the variables kx and ky, as s(v)

x is a linear form
in kx and s(v′)

y is a linear form in ky. These linear forms have coefficients are in
the range [0, . . . , p), and so we can write

pi,j =
d∑

v,v′=1
ai,j,v,v′ · k(v′)

x · k(v′)
y

84 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

where ai,j,v,v′ ∈ [0, . . . , p2). The value x · y can be written in a similar way as

d∑
v,v′=1

bv,v′ · k(v′)
x · k(v′)

y

with bv,v′ ∈ [0, . . . , p2).

By equating coefficients of k(v′)
x ·k(v′)

y on both sides, that an MSP is multiplicative
modulo pk is equivalent to there being a solution to the linear system of equations

A · µ = b (mod pk) (5.6)

for a matrix A ∈ Zs×t and a vector b ∈ Zs, both of whose coefficients are in
[0, . . . , p2), where s = d2 and t =

∑
n2

i . If we now compute the Smith Normal
Form of A, that is we find two matrices U ∈ GLs(Z) and V ∈ GLt(Z), i.e. the
matrices of determinant ±1, such that

U ·A · V = S =

s1 0 0

0 s2
...

...

... sr

...
... 0

...
...
0 0

where r is the rank of A over the integers and si|si+1 for all i. We set ν = V −1 ·µ
and can write out equations as S · ν = U · b. This will have a solution modulo
pk if and only if equation (5.6) has a solution modulo pk.

If we write U · b = (c1, . . . , cs)T then we have a solution modulo pk to this
equation, if and only if

1. For 1 ≤ i ≤ r either ordp(si) ≤ ordp(ci) or min(ordp(si), ordp(ci)) ≥ k

2. For r < i ≤ s we have ordp(ci) ≥ k,

where ordp(x) is the largest power of p dividing x. Thus, we can see that it
appears possible thatMp is multiplicative modulo p, but using the same matrix
for the MSP M may lead to a non-multiplicative MSP modulo pk.

OPENING VALUES TO ONE PLAYER AND TO ALL PLAYERS 85

5.4 Opening Values to One Player and to All Players

The key cost in an LSSS-based MPC protocol, and essentially the only place
where an active adversary can introduce errors, is when a secret shared value
is opened to one player or to all players; i.e. in the realization of the Output
command in Figure 5.2. Since we are utilizing Q2 access structures, we can
make use of the properties of Q2 access structures to detect errors introduced
by the adversary. In [SW19] it was shown that in the case of opening to one
player one could use the parity check matrix of the underlying code associated
to the secret sharing scheme to perform this check.

In the case of opening to all players, which is the main cost in protocols, one
could apply the same technique. However, this is expensive as it relies on all
players communicating their shares to all other players. This is very expensive,
thus in [SW19, KRSW18] it is also shown that the method traditionally employed
for replicated sharing for threshold (n, t) = (3, 1) structures also generalizes to
arbitrary Q2 access structures.

In this section we show that the methods of [SW19] which are proved in the
context of MSPs over finite fields, also apply in our more general context of
ESPs over the finite rings Zpk . None of the results are deep, but are included
here for completeness. The protocols are represented in Figure 5.8, but we
explain them here at a high level here, and then go into more detail below
(including the definition of various intermediate quantities).

Throughout our protocols, each player Pj maintains a running hash value Hj

which is used to check consistency of openings, between the players. Each
player should at any point hold the same value of Hj . To ensure consistency
we have a protocol HashCheck which ensures consistency of these values. Note,
the communication in HashCheck can be done in the clear, and does not need
to be protected against rushing adversaries, since each honest player will abort
when it gets an incorrect hash value. This can either be an incorrect value
sent maliciously by an adversarial player (in which case it should abort), or an
incorrect value sent honestly by an honest player (which indicates something
has gone wrong with the OpenToAll protocol).

Open to One:

To open a secret shared value [x]k to player Pi, an operation which we denote
by x ← OpenToOne(i, [x]k) in Figure 5.8. Each player sends their shares of
[x]k to player Pi. Player Pi then verifies they are consistent using the parity
check matrix for the ESP modulo pk (see below). If they are not, he aborts,

86 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

otherwise he stores the value of x. This gives an actively secure (with-abort)
method to perform openings to a given player (see below for the proofs), since,
if an adversary introduces an error in opening a value to an honest party, this
is detected by the honest party.

Open to All:

To execute an opening to everyone, an operation which we denote by x ←
OpenToAll([x]k), one could execute OpenToOne(i, [x]k) a total of n times. It
is more efficient however to only send just enough data needed to perform
the opening (as was done in [SW19, KRSW18]). For example in the case
of replicated sharing with (n, t) = (3, 1), player Pi will send only the value
s(i+1) (mod 3) to player P(i+1) (mod 3). To ensure correctness of the shares, each
party uses the received share values to construct not only x, but also the sharing
x of m values used to share x. They then update their hash function with
H.Update(x).

5.4.1 Open to One

In this section generalize the method of [SW19] from MSPs over fields to
ESPs over finite rings, so as to show the method for OpenToOne in Figure 5.8
works. Note that to open a secret a party has to recombine the shares to reveal
the underlying secret. Moreover, the opening party will have to be able to
decide if the secret it is opening is a valid sharing. Given a multiplicative ESP,
M =

(
Zpk ,M, ε, φ

)
, and a valid encoding s of a secret s, augmented with a

non-zero error e, i.e. the player receives c = s + e, it has to be possible for the
opening party to detect that the secret has been corrupted. To achieve this we
show that either s + e is no longer a qualified vector or e encodes 0.

Lemma 5.4

Let M =
(
Zpk ,M, ε, φ

)
be an ESP computing a Q2 access structure Γ

and c = s + e be the observed set of shares, given as a valid share vector
s encoding s, with error e. Then there exists a matrix N such that

φ(supp(e)) ̸∈ Γ⇒
{

e encodes the error e = 0
N · c ̸= 0

This generalizes [SW19][Lemma 2] and basically says that N can be viewed as
a parity check matrix. The proof of this lemma rests on one main requirement,

OPENING VALUES TO ONE PLAYER AND TO ALL PLAYERS 87

namely for M as given, ker(MT) admits a basis. While this is generally true
over fields this does not hold in general for modules over rings. To be able to
show that kerMT admits a basis we need to consider how M acts on Zpk as a
module. Then the following proposition shows that ker(MT) admits a basis.

Lemma 5.5

Let M =
(
Zpk ,M, ε, φ

)
be an ESP computing a Q2 access structure Γ,

then ker(MT) admits a basis.

Proof. Let M be as assumed, then M ∈Mm×d(Zpk) is a full-rank matrix with
m ≥ d. Then MT is also full rank and so dim(Im(MT)) = d = rank(M), which
means MT is surjective. Hence, by the first isomorphism theorem:

Zm
pk/ ker(MT) ∼= Im(MT)

⇒ ker(MT) ∼= Zm
pk/Zd

pk

Hence ker(MT) ∼= Zm−d
pk and as m ≥ d, ker(MT) is a free module over Zpk .

From basic module theory it is known that a free module admits a basis, and
so the lemma follows.

We also need to generalize [SW19][Lemma 1] to ESPs, which we do here

Lemma 5.6

For any ESPM = (Zpk ,M, ε, φ) computing a Q2 access structure Γ, for
any vector s ∈ Zpk ,

φ(supp(s)) /∈ Γ⇒
{

s /∈ Im(M), or
s ∈ Im(M), and s = M · x for some x ∈ Zd

pk where ⟨x, e⟩ = 0

Proof. Consider the situation where φ(supp(s)) /∈ Γ. Then, by Q2-ness of the
access structure, P\φ(supp(s)) ∈ Γ which means there exists a qualifying set
Q ⊆ P that is contained in this set for which s(i) = 0 for all i ∈ [m] for which
φ(i) ∈ Q.

By Lemma 5.2 and 5.3 it holds that the recombination vectors exist, hence the
qualified set Q can reconstruct the secret by computing ⟨λ, s⟩ for the appropriate
recombination vector λ, i.e. φ(supp(λ)) ⊆ Q, however it is clear that, for this
particular Q and λ, ⟨λ, s⟩ = ⟨λQ, sQ⟩, but sQ = 0 so ⟨λQ, sQ⟩ = 0, so the secret
is 0.

88 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Now assume that s ∈ Im(M), then for all Q ∈ Γ is holds that ⟨λQ, sQ⟩ ≡ 0
mod pk, and so by definition of the ESP s = M · x and ⟨x, ε⟩ = 0. Else
s /∈ Im(M), which proves the proposition.

We can now prove Lemma 5.4,

Proof. Let N be a matrix whose rows form a basis for ker(MT), which exists by
Lemma 5.6 and suppose e ∈ Zd

pk . Since by the Fundamental Lemma of Linear
Algebra we have ker(MT) = Im(M)⊥, we also have s ∈ Im(M) if and only if
N · s = 0. By the predicate and Lemma 5.6 we have that either e /∈ Im(M)
or e ∈ Im(M) and e = 0. If the latter holds we are done. If e /∈ Im(M), then
N · e ̸= 0, and so N · c = N · (s + e) ̸= 0 as required.

5.4.2 Open to All

The OpenToAll procedure of Figure 5.8 also generalizes an idea set out in [SW19].
Each party, Pi ∈ P, is assigned a set of shares it will receive for reconstruction.
This is done via a map q : P → 2[m], which is defined so that for each Pi ∈ P,
q(Pi) is a set Si ⊆ [m] under the conditions that

• ker(MSi) = 0, i.e. the kernel of the submatrix of M with rows indexed
by Si is trivial.

• φ−1(Pi) ⊆ Si, i.e. each party includes all of their own shares in the set Si.

Assume that such a function exists, then each Pi receives a set of shares, which
we will denote si

q(Pi) for a given secret s. Then, using this vector, Pi solves
si

q(Pi) = MSi · xi
Pi

for xi
Pi

. This xi
Pi

is then used to completely reconstruct the
share vector si = M · xi. Note that in [SW19] it is shown that such a function
q exists and that there are semi-efficient ways to compute them for MSPs over
fields. Now let M = (Zpk ,M, ϵ, ϕ) be an ESP whose reduction modulo p is
the MSP Mp = (Fp,Mp, ϵp, ϕ), recall that both programs compute the access
structure Γ. We first note that the same function q used for Mp can be used
for M, this means we can use the same q for both Mp and M that also means
that an efficient q can be computed for M.

Lemma 5.7

Let the MSP Mp be the reduction modulo p of the ESP M over Zpk .
Assume Mp is equipped with a function q as described above fulfilling
the preconditions. Then q can be extended naturally to a function that

OPENING VALUES TO ONE PLAYER AND TO ALL PLAYERS 89

fulfils the same preconditions for M.

Proof. Assume that M ≡ Mp mod p and assume the given q exists for Mp.
Then, as M and Mp compute the same access structure, ϕ−1(Pi) ⊆ Si must
also hold if we consider the natural extension of q to M. By assumption
ker(MpSi

) = 0, and as M ≡Mp mod p this means that if ker(MSi
) ̸= 0 then

0 ⊂ ker(MSi
) ⊆ {v ∈ Zd

pk | v(i) ∈ {0, p, . . . , pk−1}}.

Hence, assume that this is the case and denote by mi the ith row vector of M ,
such that

(M · v)(i) = ⟨mi,v⟩ =
m∑

j=1
m(j)

i · v
(j).

It is clear that if this is to be 0 mod pk, as required, then there exists a subset
Z ⊆ [d] such that p |

∑
z∈Z mz as mi,j ∈ [p] and vi ∈ {0, p, . . . , pk−1}. But

then modulo p there would exist a solution vp such that M · v = 0 by setting
vi = 1 if i ∈ Z and 0 otherwise, hence contradicting that ker(MpSi

) = 0. So
ker(MSi

) = 0 and therefore there exists a natural extension to q to Zpk .

Now consider the equation si = M · vxi and especially whether xi exists. As
kerMSi = 0 we know that if xi does not exist then the adversary must have
introduced errors, because si

q(Pi) is a subvector of some share vector s. If this is
the case the protocol in Figure 5.8 instructs Pi to send an abort message to all
players. If such an xi does exist the adversary may still have introduced errors.
However, the hash values will differ between the players and so will cause an
abort, when HashCheck is evaluated. This is formally described in the following
lemma.

Lemma 5.8

Let q : P → 2[m] be defined with the conditions given above (for a Q2
ESP) and let si

q(Pi) denote the subvector of shares received by Pi for a
given secret s. Suppose all parties Pi ∈ P are able to obtain a solution
xi to the equation si

q(Pi) = Mq(Pi) · xi, hence can compute si = M · xi.
Then the adversary did not introduce any errors if the reconstructed
values si and sj are equal for all players Pi and Pj .

Proof. First note that the existence of q is not in question, as [SW19] shows
that q exists modulo p and Lemma 5.7 has shown that the same q can be used.

90 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

As ker(Mq(Pi)) = 0, we see that that the map defined by Mq(Pi) is injective,
hence there exists a unique xi for every Pi ∈ P that is a solution to the equation

si
q(Pi) = Mq(Pi) · xi.

Each xi will result in a unique vector si, which will be the same for all parties if
the players reconstruct the same vector xi. Recall that, by the Q2 assumption,
the set of honest players is a qualified set. Thus, if all honest players agree on
their values of si, which they check via the hash checking, then they know that
all the values they received from any dishonest parties are consistent with the
valid sharing.

OPENING VALUES TO ONE PLAYER AND TO ALL PLAYERS 91

Protocol ΠOpening

For each Pi ∈ P, the parties choose on some recombination vector λi

such that supp(λi) ⊆ q(Pi). Denote by Hi the hash function locally
updated by player Pi, which has been pre-initialized with Hi.Init(). If at
any point Pi receives the abort command it runs the subprotocol Abort.

OpenToAll([x]k) : Each Pj ∈ P executes:

1. Retrieve from memory the recombination vector λj .
2. For each Pt ∈ P, for each r ∈ q(Pt), if φ(r) = Pj then send

sr to Pt, see Section 5.4.2 for the definition of q(Pt).
3. For each r ∈ q(Pj), wait to receive sr from player φ(r).

4. Concatenate local and received shares into sj
q(Pj) ∈ Z|q(Pj)|

pk .

5. Locally compute s = ⟨λj
q(Pj), s

j
q(Pj)⟩.

6. Solve Mq(Pj) · xj = sj
q(Pj) for xj . If there is no solution, run

Abort.
7. Execute H.Updatej(M · xj).

OpenToOne(i, [x]k) : The secret has to be opened to Pi alone and so
the parties Pj do the following:

1. Each Pj ∈ P\{Pi} sends s{Pj} to Pi, who concatenates local
and received shares into a vector s.

2. Party Pi computes N · s as discussed in section 5.4.1. If
Ns = 0, Pi outputs ⟨λi, s⟩ = s, and otherwise it runs Abort.

HashCheck() : Each Pi ∈ P does the following:

1. Compute hi := Hi.Out().
2. Send hi to all other parties Pj , for i ̸= j (this can be done in

the clear).
3. Wait for hj from all parties Pj , for i ̸= j.
4. If hj ̸= hi for any j, run Abort

Abort : If a party calls this subroutine, it sends abort to all parties and
aborts. If a party receives the message abort, it aborts.

Figure 5.8: Protocol ΠOpening

92 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.5 Multiplication Check

We present various protocols which allow one to verify that a set of passively
secure multiplications are indeed correct. In the context of generating triples,
we note that, we are unable to “lift” a valid triple modulo pk to a valid triple
modulo pk+v. Thus, if one needs to perform a check modulo pk+s, one needs to
generate the passively secure multiplication triples modulo the larger modulus
first, even if one is only interested in computation modulo pk.

We assume that the desired security level is 2κ, i.e. the probability that an
adversary can pass off an incorrect passively secure multiplication as correct
should be 2−κ. To ensure this we define four (integer) parameters (u, v, w,B)
for our protocols defined by, where Bz = 0 unless B ̸= 1 in which case we set
Bz = 1.

u = ⌈(κ+Bz)/ log2 p⌉

v = u− 1,

1 ≤ B ≤ 1 + (pw − 1)/2κ+Bz .

The value u defines the size of the challenge space in our protocols, the value v
defines how much bigger a modulus we need to work with, the value w defines
the degree of any extension needed to allow the Schwartz-Zippel Lemma 5.1 to
apply, using a set S of size pw − 1, whilst B defines the bucket size of the check
(equivalently the degree of the polynomial used in the Schwartz-Zippel Lemma).

Our methods here are a natural generalization of the methods given in [EKO+20,
ADEN19] which are themselves based on ideas used in [CDE+18]. We note
for the case of k = 1 and a small prime p the following protocols produce
more efficient “sacrificing” steps than the “traditional” method of repeating the
protocol κ/ log2 p times.

5.5.1 MultCheck1

The first protocol, often called sacrifice, takes a set of N passively secure
multiplication triples ([xi]k+v, [yi]k+v, [zi]k+v), and checks whether indeed
zi = xi · yi (mod pk), using another set of passively secure multiplication triples
([ai]k+v, [bi]k+v, [ci]k+v). The “unchecked” triples ([ai]k+v, [bi]k+v, [ci]k+v)
need to be discarded at the end of the protocol (thus the term sacrificing). The
output of the protocol is either an abort signal, or a set of N “actively” secure
triple ([xi]k, [yi]k, [zi]k). The protocol is described in Figure 5.9 and is based

MULTIPLICATION CHECK 93

internally on the Beaver multiplication protocol. For ease of exposition we
assume B exactly divides N in the protocol, this can easily be removed.

The Protocol MultCheck1

Input: ([xi]k+v, [yi]k+v, [zi]k+v)N−1
i=0 and ([ai]k+v, [bi]k+v, [ci]k+v)N−1

i=0 .
Output: abort or ([xi]k, [yi]k, [zi]k)N−1

i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .

2. Let S denote the set from the Schwartz-Zippel Lemma of size
pw − 1.

3. t← FAgreeRandom(Zpu).

4. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+v ← t · [aj·B+i]k+v − [xj·B+i]k+v.
ii. [σi]k+v ← [bj·B+i]k+v − [yj·B+i]k+v.

(c) (ρi)B−1
i=0 ← (OpenToAll([ρi]k+v))B−1

i=0 .
(d) (σi)B−1

i=0 ← (OpenToAll([σi]k+v))B−1
i=0

(e) [τ]k+v ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k+v ← t · [cj·B+i]k+v − [zj·B+i]k+v −σi · [xj·B+i]k+v −
ρi · [yj·B+i]k+v − σi · ρi.

ii. [τ]k+v ← [τ]k+v + ri · [di]k+v.
(g) τ ← OpenToAll([τ]k+v)
(h) If τ ̸= 0 (mod pk+v) output abort and stop.

5. For i ∈ [0, . . . , N) do

(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ←
[zi]k+v (mod pk).

6. Output ([x]k, [y]k, [z]k)N
i=1.

Figure 5.9: The Protocol MultCheck1

The number of calls to the procedure OpenToAll(·), which is the main cost of the

94 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

protocol is given by 2 ·N+N ·w/B, and the number of rounds of communication
(for the OpenToAll calls) is bounded by two (if one executes the main j-loop in
parallel). This means the communication cost, per output triple, is equal to the
communication of 2 + w/B executions of OpenToAll(·). In practice one would
try to select w/B to be as small as possible. In such a situation we can treat
the cost as two calls to OpenToAll(·).

In the case of k = 1 and a large prime p, the values w = 1, u = 1, v = 0 and
B = 1 give rise to exactly the traditional sacrifice protocol from SPDZ. However,
for such large p, we could choose w = 2 and allow B to be sufficiently big,
without needing an overly large amount of triples to check at once. Thus, by
utilizing our modified protocol one can achieve an improvement on the classical
SPDZ sacrificing protocol. So for large p, for the classical SPDZ sacrifice, we
have w/B = 1 and hence the cost is three calls to OpenToAll(·), but for our
protocol we can achieve two calls to OpenToAll(·).

As long as we perform the calls to AgreeRandom only after the adversary had
a chance to influence the triples, and the adversary is fully committed to any
errors introduced in them, we can use the same random values for t and r over
all instantiations. The practical advantage of this is that the data cost of these
calls can then be amortized over all these executions, and we can consider it
negligible. Due to the commit-reveal nature of the AgreeRandom sub-protocol,
however, we still need to take a cost of two rounds of communication into
account. All invocations of AgreeRandom that we need to generate the required
t and r values can be executed in parallel, so the number of rounds we need
does not grow as the number of times MultCheck1 is executed grows.

We now prove the following theorem which is an adaption of similar results in
[CDE+18] (especially Claim 6 in that paper) and the papers [EKO+20, ADEN19],
but we have generalized the method to arbitrary p and also the case of potentially
small k.

Lemma 5.9

In the presence of an active adversary, who can introduce arbitrary
additive errors into the input triples, the protocol MultCheck1 will output
an invalid multiplication triple with probability (B−1)/(pw−1)+p−u ≤
2−κ.

Proof. We first note that since the OpenToAll sub-protocol ensures the opened
shares are indeed consistent, the only error that can be introduced by the
adversary is an error in the ci or zi. Without loss of generality we can assume

MULTIPLICATION CHECK 95

these are additive errors known to the adversary, thus we have ci = ai · bi + ec,i

and zi = xi · yi + ez,i for some ec,i, ez,i ∈ Zpk+v .

The value τ represents a polynomial of degree B − 1 over Zpk+v evaluated at a
random point r ∈ S. Thus, by the Schwartz-Zippel Lemma 5.1 the probability
that τ = 0 (mod pk+v) when the polynomial is not identically zero is bounded
by (B − 1)/(pw − 1). Thus, we can conclude that each coefficient is identically
equal to zero, i.e. the errors satisfy for each i.

t · ec,i + ez,i = 0 (mod pk+v).

Note, we are finally only interested in errors for which ec,i ̸= 0 (mod pk), as we
only are going to output a sharing modulo pk. So we write psi = gcd(ec,i, p

k+v),
and since ec,i ̸= 0 (mod pk) we have si + 1 ≤ k.

We can write ec,i = psi · fi and ez,i = psi · gi for some fi, gi ∈ Zpk+v . For the
equation to pass we must then have that

t · fi + gi = 0 (mod pk+v−si).

In particular this means that t ≡ −gi/fi (mod pk+v−si), as gcd(fi, p) = 1. In
particular the value t which will make the protocol verify is determined (modulo
pk+v−si) completely by the error introduced by the adversary; and in effect it
must be the same error introduced on each invalid pair of triples.

Note, that the adversary needed to commit to the values ec,i and ez,i before they
see the t. Thus, t is pre-determined from a set of size pk+v−si ≥ psi+1+v−si =
pv+1 = pu, since k ≥ si+1. Therefore, the probability of an adversary passing off
a set of invalid tuples as valid, when τ = 0, is bounded by p−u < 2−(κ+Bz).

5.5.2 MultCheck′
1

We will also use the MultCheck1 protocol in the case where we are already
guaranteed that the auxiliary triples ([ai]k, [bi]k, [ci]k)N−1

i=0 are correct, and we
have v = 0 and u = k, and we are simply checking whether the passively
secure triples ([xi]k, [yi]k, [zi]k)N−1

i=0 are correct. We refer to this special case
as MultCheck′1 and it is presented in Figure 5.10. The round complexity is
the same as that of MultCheck1, except for the output, although now we can
operate modulo pk only, without needing to extend to working modulo pk+s.
In this special case we obtain the following result,

96 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

The Protocol MultCheck′1

Input: ([xi]k, [yi]k, [zi]k)N−1
i=0 and ([ai]k, [bi]k, [ci]k)N−1

i=0 .
Output: abort or OK.

1. Let R denote a degree w Galois ring over Zpk .

2. Let S denote the set from the Schwartz-Zippel Lemma.

3. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k ← [aj·B+i]k − [xj·B+i]k.
ii. [σi]k ← [bj·B+i]k − [yj·B+i]k.

(c) (ρi)B−1
i=0 ← (OpenToAll([ρi]k))B−1

i=0 .
(d) (σi)B−1

i=0 ← (OpenToAll([σi]k))B−1
i=0

(e) [τ]k ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k ← [cj·B+i]k−[zj·B+i]k−σi ·[xj·B+i]k−ρi ·[yj·B+i]k−
σi · ρi.

ii. [τ]k ← [τ]k + ri · [di]k.
(g) τ ← OpenToAll([τ]k)
(h) If τ ̸= 0 (mod pk) output abort and stop.

4. Output OK.

Figure 5.10: The Protocol MultCheck′1

Lemma 5.10

In the presence of an active adversary, who can introduce arbitrary
additive errors into the input triples ([xi]k, [yi]k, [zi]k)N−1

i=0 , but not the
input triples ([ai]k, [bi]k, [ci]k)N−1

i=0 , the protocol MultCheck′1 will output
OK incorrectly with probability (B − 1)/(pw − 1) ≤ 2−(κ+Bz).

Proof. We first note that since the OpenToAll sub-protocol ensures the opened
shares are indeed consistent the only error that can be introduced by the

MULTIPLICATION CHECK 97

adversary is an error in the zi, there can be no error in the ci by assumption.
Without loss of generality we can assume these are additive errors known to the
adversary, thus we have ci = ai · bi and zi = xi · yi + ez,i for some ez,i ∈ Zpk .
The application of the Schwartz-Zippel lemma allows us to conclude, except
with probability bounded by (B − 1)/(pw − 1), that we have, for each i, that
ez,i = 0 (mod pk). Hence, except with probability bounded by (B−1)/(pw−1),
there can be no errors in the triples ([xi]k, [yi]k, [zi]k)N−1

i=0 .

5.5.3 MultCheck2

Our third protocol comes from a combination of ideas from [CDE+18] and
[KOS16]. Instead of consuming previously produced multiplication triples (which
themselves require a passively secure multiplication to produce) this second
variant makes direct use of a passively secure multiplication protocol PassMult;
which can be any of MaurerMult, KRSWMult or DNMult. The protocol, called
MultCheck2, is described in Figure 5.11. The argument for security is roughly
the same as that for protocol MultCheck1.

5.5.4 MacCheck

Our final protocol is the generalization of the MacCheck protocol from [DPSZ12]
to our situation. The protocol checks, for an input of a single secret shared
value [α]k+v and a series of pairs of secret shared values ([xi]k+v, [yi]k+v)N−1

i=0 ,
whether we have yi = α · xi (mod pk+v), or whether yi is invalid up to an
additive error. Note, unlike the MacCheck protocol from [DPSZ12] we are not
checking the MACs of opened values, but checking the consistency of pairs of
unopened values with respect to the shared MAC key α, as such it is closer
to the verification stage of the protocol in [CGH+18]. We note that with the
instantiation given in Figure 5.12, this checking procedure “burns” the value
[α]k+v, thus this does not allow for reactive computations. In [CGH+18] it
is shown how to avoid this problem for specific secret sharing schemes. The
protocol is given in Figure 5.12

Lemma 5.11

Protocol MacCheck in Figure 5.12 on input of an invalid set of pairs
([xi]k+v, [yi]k+v)N−1

i=0 will return OK with probability less than 2−κ.
Where a pair being invalid means that yi = α · xi + ei, for an ei known
to the adversary with ei ̸= 0 (mod pk).

98 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

The Protocol MultCheck2

Input: ([xi]k+v, [yi]k+v, [zi]k+v)N−1
i=0 .

Output: abort or ([xi]k, [yi]k, [zi]k)N−1
i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .

2. Let S denote the set from the Schwartz-Zippel Lemma.

3. For i ∈ [0, . . . , N) do

(a) [ai]k+v ← FPRSS(k + v).
(b) [ci]k+v ← PassMult([ai]k+v, [yi]k+v).

4. t← FAgreeRandom(Zpu).

5. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+s ← t · [xj·B+i]k+v + [aj·B+i]k+v.
(c) (ρi)B−1

i=0 ← (OpenToAll([ρi]k+v))B−1
i=0 .

(d) [τ]k+v ← 0.
(e) For i ∈ [0, . . . , B) do

i. [τ]k+v ← [τ]k+v + ri · (t · [z]k+v + [c]k+v − ρ · [y]k+v).
(f) τ ← OpenToAll([τ]k+s)
(g) If τ ̸= 0 (mod pk+v) output abort and stop.

6. For i ∈ [0, . . . , N) do

(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ←
[zi]k+v (mod pk).

7. Output ([xi]k, [yi]k, [zi]k)N−1
i=0 .

Figure 5.11: The Protocol MultCheck2

Proof. Given the additive errors ei we can define a global additive error e on
the pair (u, v) with

t = v − α · u =
N−1∑
i=0

ri · yi − ri · α · xi

MULTIPLICATION CHECK 99

The Protocol MacCheck

Input: [α]k+v and ([xi]k+v, [yi]k+v)N−1
i=0 .

Output: abort or OK.

1. For i ∈ [0, N) do ri ← FAgreeRandom(Zpu).

2. [u]←
∑N−1

i=0 ri · [xi]k+v.

3. [v]←
∑N−1

i=0 ri · [yi]k+v.

4. [c]k+v ← FPRSS(k + v).

5. α← OpenToAll([α]k+v).

6. [t]k+v ← [v]k+v − α · [u]k+v.

7. [s]k+v ← PassMult([t]k+v, [c]k+v).

8. s← OpenToAll([s]k+v).

9. If s = 0 then return OK, else return abort.

Figure 5.12: The Protocol MacCheck

=
N−1∑
i=0

ri · (yi − α · xi)

=
N−1∑
i=0

ri · ei = e.

The passively secure multiplication can itself introduce an additive error d on
s, i.e. a = c · t+ d = c · e+ d. Thus, the test will output OK incorrectly when
a = 0, but there is an ei ̸= 0 (mod pk).

We are only interested in errors for which ei ̸= 0 (mod pk), i.e. e ≠ 0 (mod pk).
So we write ps = gcd(e, pk+v), and since e ̸= 0 (mod pk) we have s + 1 ≤ k.
We thus write e = ps · f and d = ps · g for some f, g ∈ Zpk+v . For the equation
to pass we then require that

c · f + d = 0 (mod pk+v−s).

This in particular means that c = −g/f (mod pk+v−s), which means that c is
completely determined by the errors ei introduced by the adversary and the

100 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

random values ri. But these values must be committed to by the adversary before
the value c is obtained. But c is chosen from a set of size pk+v−s ≥ pv+1 > 2κ,
and thus the probability that c will pass the test incorrectly is bounded by
2−κ.

5.5.5 Summary

We summarize the costs of various protocols in Table 5.2 for a general ESP
over Zpk . These are given in terms of the row m and column d dimensions
of the matrix generating the underlying ESP, the number of parties n, and
the parameters w and B used in the protocols above. We let |si| denote the
share size of player Pi for the given ESP. The data column indicates the total
amount of data sent for all players7 as a multiple of the underlying secret shared
data size (i.e. either k · log2 p or (k + v) · log2 p); we ignore rounds/data to
check the running hash values H as these are amortized over many sub-protocol
executions. A ⋆ in the table indicates that the value depends highly on the
specific ESP, and thus a formula is hard to present. The cost ⋆1 of OpenToAll
is generally n · d−m for an MSP with no redundancy, but it can be larger than
this if the MSP has more redundancy than necessary.

We present three lines corresponding to MultCheck2 and MacCheck depending
on whether the underlying passively secure multiplication is Maurer, KRSW or
DN based. We assume FPRSS is executed non-interactively in all cases, that any
calls to FAgreeRandom are amortized across many calls to MultChecki, and that
no king-paradigm is used in order to keep the number of rounds to a minimum.
As mentioned in the discussion on the multiplication checks, we always consider
w/B to be negligibly small.

To provide more concrete values we also give, in Table 5.3, the values for the
three different instantiations of threshold sharings for (n, t) ∈ {(3, 1), (5, 2),
(10, 4)}. In the table we assume the parameters for our checking procedures are
selected so that the term w/B can be ignored. The three different sharings have
been selected as replicated (for general pk), standard Shamir (for the case of
p > n) and Shamir obtained via Galois rings (for the important case of p = 2).
More specifically our three examples are; see Appendix 5.B for details

1. Threshold replicated sharing for threshold t. This has values m = (n−
t) · nCt and d = nCt, where nCt denotes the number of combinations of t
objects selected from a pool of n. Each player holds |si| = m/n shares.
The data cost of OpenToAll per player is d− |si|, and thus the total cost,

7i.e. not the per-player amount

MULTIPLICATION CHECK 101

General MSP
Protocol Rounds Data PRSS/PRZS Triples

Share 1 m− |si| 0 0
OpenToOne 1 m− |si| 0 0
OpenToAll 1 ⋆1 0 0
BeaverMult 1 2 · ⋆1 0 1
MaurerMult 1 (n− 1) ·m 0 0
KRSWMult 1 ⋆2 ⋆3 0

DNMult 1 n · (n− 1) 2 0
MacCheckM 4 (n− 1) ·m+ 2 · ⋆1 1 0
MacCheckK 4 ⋆2 + 2 · ⋆1 1 + ⋆3 0
MacCheckD 4 n · (n− 1) + 2 · ⋆1 3 0
MultCheck1 4 (2 + w/B) · ⋆1 0 0
MultCheckM

2 5 (n− 1) ·m+ (1 + w/B) · ⋆1 1 0
MultCheckK

2 5 ⋆2 + (1 + w/B) · ⋆1 1 + ⋆3 0
MultCheckD

2 5 n · (n− 1) + (1 + w/B) · ⋆1 3 0

Table 5.2: Costs of the Base Protocols for a General Access Structures

⋆1, over all players n · d − m. Table 1 in [SW19] gives the cost ⋆2 of
KRSWMult as n · (n− t− 1).

2. Shamir sharing for threshold t when p is large. Here we have m = n
and d = t + 1, with each player holds |si| = 1 share. The data cost of
OpenToAll per player is again d − |si|, and thus the total cost, ⋆1, over
all players n · (t+ 1)− n = n · t. Table 1 in [SW19] gives the cost ⋆2 of
KRSWMult again as n · (n− t− 1).

3. Shamir sharing for threshold t when p is two. Here we need to define a
degree dn such that n ≤ 2dn − 1, so we select d3 = 2, d5 = 3 and d10 = 4.
We have m = n · dn and d = dn · t + 1, and each player holds |si| = dn

elements in their sharing. Thus, the data cost of OpenToAll per player is
again d− |si|, and so the total cost, ⋆1, over all players is n · d−m. The
cost of KRSWMult in this case depends on many factors and cannot be
easily expressed in a closed formula. Therefore, we present the concrete
values for our examples in Table 5.38. The derivation of these costs can
be found in Appendix 5.B.

In most cases we see that KRSW-based multiplication is the more efficient choice
(in terms of bandwidth consumed as opposed to computational resources). Only

8In this table for threshold (10, 4) we give the KRSWMult cost for k = 128.

102 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

for Shamir sharing over Z2k , do we see that DNMult outperforms KRSWMult
due to it having no dependency on the size of the ESP, as it’s communication
cost only depends (quadratically) on the number of players. Thus, we will
assume the most efficient choice of passive multiplication is used for a given ESP
for the rest of our analysis in this chapter. An interesting observation is that
the KRSWMult cost of replicated sharing for a given access structure always
is more efficient than the same cost using a dedicated Shamir-based sharing;
although of course the other costs are more expensive when using replicated.

MULTIPLICATION CHECK 103
R

ep
li

ca
te

d
(3

,
1)

R
ep

li
ca

te
d

(5
,

2)
R

ep
li

ca
te

d
(1

0,
4)

P
ro

to
co

l
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

R
ou

n
d

s
D

at
a

P
R

S
S

/P
R

Z
S

T
ri

p
le

s
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

Sh
ar

e
1

4
0

0
1

24
0

0
1

11
34

0
0

O
pe

nT
oO

ne
1

4
0

0
1

24
0

0
1

11
34

0
0

O
pe

nT
oA

ll
1

3
0

0
1

20
0

0
1

84
0

0
0

B
ea

ve
rM

ul
t

1
6

0
1

1
40

0
1

1
16

80
0

1
M

au
re

rM
ul

t
1

12
0

0
1

12
0

0
0

1
11

34
0

0
0

K
RS

W
M

ul
t

1
3

1
0

1
10

1
0

1
50

1
0

D
N

M
ul

t
1

6
2

0
1

20
2

0
1

90
2

0
M

ac
Ch

ec
kM

4
18

1
0

4
16

0
1

0
4

13
02

0
1

0
M

ac
Ch

ec
kK

4
9

2
0

4
50

2
0

4
17

30
2

0
M

ac
Ch

ec
kD

4
12

3
0

4
60

3
0

4
17

70
3

0
M

ul
tC

he
ck

1
4

6
0

0
4

40
0

0
4

16
80

0
0

M
ul

tC
he

ck
M 2

5
15

1
0

5
14

0
1

0
5

12
18

0
1

0
M

ul
tC

he
ck

K 2
5

6
2

0
5

30
2

0
5

89
0

2
0

M
ul

tC
he

ck
D 2

5
9

3
0

5
40

3
0

5
93

0
3

0

S
h

am
ir

(3
,

1)
fo

r
la

rg
e

p
ri

m
e

S
h

am
ir

(5
,

2)
fo

r
la

rg
e

p
ri

m
e

S
h

am
ir

(1
0,

4)
fo

r
la

rg
e

p
ri

m
e

P
ro

to
co

l
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

R
ou

n
d

s
D

at
a

P
R

S
S

/P
R

Z
S

T
ri

p
le

s
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

Sh
ar

e
1

2
0

0
1

4
0

0
1

9
0

0
O

pe
nT

oO
ne

1
2

0
0

1
4

0
0

1
9

0
0

O
pe

nT
oA

ll
1

3
0

0
1

10
0

0
1

40
0

0
B

ea
ve

rM
ul

t
1

6
0

1
1

20
0

1
1

80
0

1
M

au
re

rM
ul

t
1

6
0

0
1

20
0

0
1

90
0

0
K

RS
W

M
ul

t
1

3
2

0
1

10
3

0
1

50
6

0
D

N
M

ul
t

1
6

2
0

1
20

2
0

1
90

2
0

M
ac

Ch
ec

kM
4

12
1

0
4

40
1

0
4

17
0

1
0

M
ac

Ch
ec

kK
4

9
3

0
4

30
4

0
4

13
0

7
0

M
ac

Ch
ec

kD
4

12
3

0
4

40
3

0
4

17
0

3
0

M
ul

tC
he

ck
1

4
6

0
0

4
20

0
0

4
80

0
0

M
ul

tC
he

ck
M 2

5
9

1
0

5
30

1
0

5
13

0
1

0
M

ul
tC

he
ck

K 2
5

6
3

0
5

20
4

0
5

90
7

0
M

ul
tC

he
ck

D 2
5

9
3

0
5

30
3

0
5

13
0

3
0

S
h

am
ir

(3
,

1)
fo

r
Z 2k

S
h

am
ir

(5
,

2)
fo

r
Z 2k

S
h

am
ir

(1
0,

4)
fo

r
Z 2k

P
ro

to
co

l
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

R
ou

n
d

s
D

at
a

P
R

S
S

/P
R

Z
S

T
ri

p
le

s
R

ou
n

d
s

D
at

a
P

R
S

S
/P

R
Z

S
T

ri
p

le
s

Sh
ar

e
1

4
0

0
1

12
0

0
1

36
0

0
O

pe
nT

oO
ne

1
4

0
0

1
12

0
0

1
36

0
0

O
pe

nT
oA

ll
1

3
0

0
1

20
0

0
1

13
0

0
0

B
ea

ve
rM

ul
t

1
6

0
1

1
40

0
1

1
26

0
0

1
M

au
re

rM
ul

t
1

12
0

0
1

60
0

0
1

36
0

0
0

K
RS

W
M

ul
t

1
9

5
0

1
52

5
0

1
28

0
32

0
D

N
M

ul
t

1
6

2
0

1
20

2
0

1
90

2
0

M
ac

Ch
ec

kM
4

18
1

0
4

10
0

1
0

4
62

0
1

0
M

ac
Ch

ec
kK

4
15

6
0

4
92

6
0

4
54

0
33

0
M

ac
Ch

ec
kD

4
12

3
0

4
60

3
0

4
35

0
3

0
M

ul
tC

he
ck

1
4

6
0

0
4

40
0

0
4

26
0

0
0

M
ul

tC
he

ck
M 2

5
15

1
0

5
80

1
0

5
49

0
1

0
M

ul
tC

he
ck

K 2
5

12
6

0
5

72
6

0
5

41
0

33
0

M
ul

tC
he

ck
D 2

5
9

3
0

5
40

3
0

5
22

0
3

0

Ta
bl

e
5.

3:
C

os
ts

of
th

e
Ba

se
pr

ot
oc

ol
s

fo
r

Va
rio

us
A

cc
es

s
St

ru
ct

ur
es

104 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.6 Offline Preprocessing Protocols

Given the previous components there are a large number of variations one can
deploy to obtain an MPC protocol for a Q2 access structure which is actively
secure with abort. In many cases, some form of preprocessing is used to generate
multiplication triples. In this section, we aim to give an overview of different
methods to generate passive and active multiplication triples, and evaluate
the associated cost in terms of their round and data complexity. We give one
passively secure offline protocol, and three actively secure variants. To generate
actively secure multiplication triples, we generally first generate passively secure
triples, and then we check for correctness (against potential additive attacks) in
different ways.

Some of these offline protocols inherently require working (internally) with an
extension of the modulus pk+v, whilst all can produce triples modulo pk or
pk+v depending on whether the output protocol requires triples modulo pk or
pk+v. Whether the output is modulo pk or pk+v will depend into which main
protocol we will embed the offline protocol. When we want to distinguish these
various cases we will write OfflineX(poutput, pinternal) for an offline protocol which
outputs triples modulo poutput, whilst working internally modulo pinternal. Note,
if output = k + v then we must have internal = k + v as well. In all cases we
assume that all PRSS and PRZS operations are performed non-interactively,
and all passive secure multiplications will be assumed to be performed using
which ever is the best out of KRSW or DN for the specific parameter sets9.

OfflinePass:

When generating N passively secure multiplication triples, we take the approach
of first generating 2 · N random sharings by performing 2 · N calls to PRSS.
Following that, we perform a passively secure multiplication protocol N times in
parallel to compute the product over pairs of those shares. Since we can perform
the N required multiplications in parallel, for the multiplication we only need
a single round of communication, with a total data cost of N · PassMultdata,
and a corresponding cost of PassMultdata per triple produced. We simplify the
presentation in Table 5.4 by writing OfflinePass(pk) for OfflinePass(pk, pk) and
OfflinePass(pk+v) for OfflinePass(pk+v, pk+v).

9These are both cheaper than Maurer in terms of data transfer, although they require
more PRSS and PRZS calls.

OFFLINE PREPROCESSING PROTOCOLS 105

Offline1:

The first actively secure protocol, Offline1, will follow the ideas presented in
[DPSZ12], in that to generate N actively secure multiplication triples it starts
by executing OfflinePass to produce 2 · N triples. Then half of the obtained
triples are sacrificed, using MultCheck1, so as to check the remaining half for
correctness.

The cost of OfflinePass is given above. For the verification stage we apply an
application of MultCheck1 on two vectors of triples, each of length N . This
requires two rounds of communication and (2 + w/B) · OpenToAlldata in data
transferred. This means, amortizing for the number of multiplications, that
there are three rounds of communication in total and a data transfer, per triple,
of

2 · PassMultdata + (2 + w/B) · OpenToAlldata.

However, note that MultCheck1 requires Offline1 to work over the extended ring
Zpk+v and therefore each multiplication requires (k + v) · log2(p) bits to be
transferred, irrespective of the modulus of the output triples, leading to

(2 · PassMultdata + (2 + w/B) · OpenToAlldata) · (k + v) · log2(p)

irrespective of whether output = k or output = k + v or not. Thus, the cost
of Offline1(pk, pk+v) and Offline1(pk+v, pk+v) are identical. Thus, in our table
below (Table 5.4) we simply write Offline1(pk+v).

Offline2:

For the second active offline protocol, Offline2, we follow [EKO+20]. First N
passively secure triples are generated using OfflinePass. Then these triples are
checked to be resistant to additive attacks by running MultCheck2 on the vector
of N triples.

The communication in MultCheck2 requires three rounds of interaction and the
data cost is PassMultdata + (1 + w/B) · OpenToAlldata. This renders the cost
for the full protocol, amortizing for the number of multiplications, to be four
rounds of communication and

2 · PassMultdata + (1 + w/B) · OpenToAlldata

in data transferred. Much like Offline1 this protocol works over Zpk+v and
therefore all data transferred is (k+ v) · log2(p) bits, irrespective of the modulus
for the output triples. This means that the total data transferred is

(k + v) · log2(p) · (2 · PassMultdata + (1 + w/B) · OpenToAlldata).

106 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Again, the cost of Offline2(pk, pk+v) and Offline2(pk+v, pk+v) are identical.
Again, in our table below (Table 5.4) we simply write Offline2(pk+v).

Offline3:

For our third variant of the Offline protocol, which we call Offline3, we use the
cut-and-choose methodology of [ABF+17, Protocol 3.1]. This is parametrized by
four integer parameters (Bk, C,X,L), and it generates N = (X − C) · L triples
in each iteration, given input of T = (N +C ·L) · (Bk− 1) +N passively secure
triples. The value Bk represents a bucket size for the final checking procedure.
The advantage of this version of the Offline protocol is that we achieve active
security without needing to extend the ring, i.e. we can work modulo pk and
not work pk+v if we require triples modulo pk as output.

The T triples are initially generated using OfflinePass and to perform the check,
the T triples are divided into Bk sets. The first D1 of size N , whilst the rest
D2, . . . , DBk, of size N + L · C. The sets D2, . . . , DBk are further subdivided
into sets of size X, Di,j for i = 2, . . . ,Bk and j = 1, . . . , L. The elements of
set Di,j are then randomly permuted within each other, and then a random
permutation is applied to the vector (1, . . . , L), so as to randomly permute
the sets D2, . . . , DBk. The permutation is done in this way to ensure cache
efficiency. Finally, the first C triples in each subarray Di,j , for i = 2, . . . ,Bk and
j = 1, . . . , L are opened and verified to be correct. Thus, this set requires 3 ·C ·
(Bk− 1) ·L parallel calls to OpenToAll, resulting in one round of communication
and data transfer of

3 · C · (Bk− 1) · L · OpenToAlldata.

The final step is to divide the remaining Bk · N triples into N buckets of
size Bk, with one triple in each bucket from D1, and the rest from one of
D2, . . . , DBk. With very high probability we know the triples in D2, . . . , DBk
are all correct. Thus, this final check can be performed using (Bk− 1) parallel
calls to MultCheck′1, each containing N elements. This requires two rounds of
communication and a total data transfer of N ·(Bk−1)·(2+w/B)·OpenToAlldata.

OFFLINE PREPROCESSING PROTOCOLS 107

Including the generation of triples, this requires a total of four rounds of
communication and a total data transfer of

1
N
·
(
T · PassMultdata + 3 · C · (Bk− 1) · L · OpenToAlldata

+N · (Bk− 1) · (2 + w/B) · OpenToAlldata

)
=
(

(Bk− 1) · (1 + C · L/N) + 1
)
· PassMultdata

+
(

(3 · C · L/N) + (2 + w/B)
)
· (Bk− 1) · OpenToAlldata.

The last consideration to be had regarding the cost of this protocol is that using
MultCheck′1 allows Offline3 to work, not in Zpk+v , but in Zpoutput . Thus, if we
have output = k then we do not need to work at modulo pk+v when running
this offline variant.

The statistical security offered by this approach is 1/NBk−1 when used as
a standalone offline procedure, or 1/NBk when used with a specific online
procedure (see the third protocol of [ABF+17] for the details); note in the latter
case one needs to select C ≥ 3 and that this corresponds to our Protocol 4
below. In [ABF+17] the authors, for pk = 2, target a statistical security level
of κ = 40 bits. Thus, they can select N = 220, Bk = 2, L = 512 and C = 3 to
achieve an offline cost of 12 bits per triple when utilized in Protocol 4 below.

To provide a fair comparison between all protocols in this chapter we target a
statistical security level of κ = 128. Thus, when using Offline3 in Protocol 1 below
we use the parameters (N,Bk, L, C) = (222, 7, 512, 1) and when using Offline3
in Protocol 4 below we use the parameters (N,Bk, L, C) = (222, 6, 512, 3). To
simplify the presentation in Table 5.4 by writing Offline3(pk) for Offline3(pk, pk)
and Offline3(pk+v) for Offline3(pk+v, pk+v), and we give the costs for the
parameters (N,Bk, L, C) = (222, 6, 512, 3) in the table.

5.6.1 Comparing Actively Secure Offline Protocols

Having analysed the three actively secure offline protocols one could compare
them theoretically, using the formulae. This is alas however not that illuminative,
due to the complexity of the various parameters for Offline3. Comparing Offline1
vs Offline2, is simpler as Offline1 is better in terms of number of rounds of
communication, whereas Offline2 is better in terms of the amount of data sent
per multiplication. To allow a more direct comparison we present the precise
values for our different access structures and ring/field sizes in Table 5.4. We

108 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

assume a security parameter of κ = 128, and choices of (u, v, w,B) from Section
5.5 so that w/B can be ignored. In Table 5.4 we present the number of bits per
triples that need to be transferred.

OFFLINE PREPROCESSING PROTOCOLS 109

A
cc

es
s

S
tr

u
ct

u
re

R
in

g
S

ch
em

e
M

u
lt

O
ffl

in
e P

as
s(

p
k

)
O

ffl
in

e P
as

s(
p

k
+

v
)

O
ffl

in
e 1

(p
k

+
v

)
O

ffl
in

e 2
(p

k
+

v
)

O
ffl

in
e 3

(p
k

)
O

ffl
in

e 3
(p

k
+

v
)

(3
,

1)
F 2

R
ep

li
ca

te
d

K
R

S
W

3
38

7
15

48
11

61
57

73
56

(3
,

1)
F 2

S
h

am
ir

Z 2k
D

N
6

77
4

23
22

19
35

78
10

06
6

(3
,

1)
Z 21

28
R

ep
li

ca
te

d
K

R
S

W
38

4
76

8
30

72
23

04
72

99
14

59
9

(3
,

1)
Z 21

28
S

h
am

ir
Z 2k

D
N

76
8

15
36

46
08

38
40

99
88

19
97

6
(3

,
1)

F p
R

ep
li

ca
te

d
K

R
S

W
38

4
76

8
30

72
23

04
72

99
14

59
9

(3
,

1)
F p

S
h

am
ir

K
R

S
W

38
4

76
8

30
72

23
04

72
99

14
59

9
(5

,
2)

F 2
R

ep
li

ca
te

d
K

R
S

W
10

12
90

77
40

51
60

31
0

40
01

0
(5

,
2)

F 2
S

h
am

ir
Z 2k

D
N

20
25

80
10

32
0

77
40

38
0

49
04

3
(5

,
2)

Z 21
28

R
ep

li
ca

te
d

K
R

S
W

12
80

25
60

15
36

0
10

24
0

39
70

0
79

39
9

(5
,

2)
Z 21

28
S

h
am

ir
Z 2k

D
N

25
60

51
20

20
48

0
15

36
0

48
66

2
97

32
5

(5
,

2)
F p

R
ep

li
ca

te
d

K
R

S
W

12
80

25
60

15
36

0
10

24
0

39
70

0
79

39
9

(5
,

2)
F p

S
h

am
ir

K
R

S
W

12
80

25
60

10
24

0
76

80
24

33
1

48
66

2
(1

0,
4)

F 2
R

ep
li

ca
te

d
K

R
S

W
50

64
50

22
96

20
12

12
60

10
43

6
13

46
19

8
(1

0,
4)

F 2
S

h
am

ir
Z 2k

D
N

90
11

61
0

56
76

0
39

99
0

21
91

28
26

46
(1

0,
4)

Z 21
28

R
ep

li
ca

te
d

K
R

S
W

64
00

12
80

0
45

56
80

24
06

40
13

35
76

3
26

71
52

6
(1

0,
4)

Z 21
28

S
h

am
ir

Z 2k
D

N
11

52
0

23
04

0
11

26
40

79
36

0
28

04
55

56
09

10
(1

0,
4)

F p
R

ep
li

ca
te

d
K

R
S

W
64

00
12

80
0

45
56

80
24

06
40

13
35

76
3

26
71

52
6

(1
0,

4)
F p

S
h

am
ir

K
R

S
W

64
00

12
80

0
46

08
0

35
84

0
10

62
88

21
25

76

Ta
bl

e
5.

4:
C

os
ts

of
th

e
O

ffl
in

e
Pr

ot
oc

ol
s

in
nu

m
be

r
of

bi
ts

pe
r

m
ul

tip
lic

at
io

n,
fo

r
va

rio
us

ac
ce

ss
st

ru
ct

ur
es

;κ
=

12
8,

p
≈

212
8

110 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.7 Complete Protocols

We now examine the five (main) protocol variants we discussed in the
introduction. For each of the following protocols, if an actively secure offline
phase is required we can utilize the protocols Offlinex, for x either 1, 2 or 3, given
in Section 5.6. There are two basic metrics here that one could be interested in
(assuming to a first order approximation we are processing arithmetic circuits
over Zpk), namely, the amount of data transferred per multiplication in the
online phase only, or the amount of data transferred per multiplication in the
combined online and offline phases. These two metrics capture the different
potential use cases of whether pre-processing is considered a cost or not; which
would depend on the precise implementation within a commercial environment.
Note, here we consider the cost of any post-processing to be considered within
the online phase costs. In all cases we assume we are processing an arithmetic
circuit with N multiplication gates in a circuit of multiplicative depth d. In our
calculations of costs below we ignore any round or data communication costs
due to the input or output of the function; since these are usually negligible in
comparison to the functions multiplicative complexity.

Protocol1:

This protocol executes an actively secure offline phase to produce N triples in
Zpk , i.e. we execute Offlinex(pk, p⋆) for ⋆ being either k or k + v, depending
on the precise protocol choice x. Note, this means we have three choices for
Protocol1 depending on which offline protocol the main protocol is combined
with. The online phase is executed, using these triples, using BeaverMult as
the multiplication procedure. Since the Beaver multiplication is instantiated
with actively secure triples the output will also be actively secure, and no
post-processing check is necessary.

Recall that each instantiation of BeaverMult requires one round of communica-
tion and a total of 2 · OpenToAlldata in data transferred. Thus, our we have the
online phase requires d rounds of communication and

2 · log2(p) · k · OpenToAlldata

data communication. The online cost does not depend on the choice of offline
phase.

If we look at the combined cost of the online and offline phases then we will
require Offlinerounds + d rounds of communication and a data communication
cost of

Offlinedata + 2 · log2(p) · k · OpenToAlldata

COMPLETE PROTOCOLS 111

per multiplication, where Offlinedata is taken from the relevant columns of
Table 5.4. In Table 5.5 we refer to the three combined costs per multiplication
as Totalx, depending on which Offline phase we are utilizing.

Protocol2:

In this protocol we optimistically use a passively secure online multiplication
protocol PassMult to execute the online phase, and a passively secure Offline
protocol to generate N passively secure multiplication triples, all over Zpk+v .
These are then checked using a post-processing methodology, based on
MultCheck1, to ensure active security. This approach of optimistic, passively
secure online multiplication was first suggested in [EKO+20].

The number of rounds for the online phase is d+ 4, as we require four rounds
to execute MultCheck1, and the total communication for the online phase, per
multiplication gate, is

log2(p) · (k + v) · (PassMultdata + MultCheck1,data),

where PassMultdata and MultCheck1,data are taken from Table 5.2.

If we look at the combined cost of the online and offline phases then we will
require Offlinerounds + d+ 4 rounds of communication and a data communication
cost of

OfflinePass(pk+v)data + log2(p) · (k + v) · (PassMultdata + MultCheck1,data)

per multiplication, where OfflinePass(pk+v)data is taken from Table 5.4.

Protocol3:

This proceeds very much as Protocol2 except instead of using an offline phase
and the MultCheck1 procedure, one uses the MultCheck2 procedure. As there
is no offline phase, online and post-processing costs are the total costs of the
protocol. Again all operations needs to be performed over Zpk+v .

The number of rounds for the online phase is now d+5, as we require five rounds
to execute MultCheck2, and the total communication for the online phase, per
multiplication gate, is

log2(p) · (k + v) · (PassMultdata + MultCheck2,data),

where PassMultdata and MultCheck2,data are taken from Table 5.2.

112 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Protocol4:

This protocol variant follows the pattern from [ABF+17] and thus is particularly
suited to small values of pk. It can be applied using any of the actively secure
offline protocols, but is better suited (for small pk) to be used with Offline3.

In the offline phase we generate N actively secure multiplication triples in
Zpk . In the online phase a standard passively secure online phase is executed,
using PassMult. Then in the post-processing the triples produced in the offline
phase are checked against the ‘triples’ resulting from the passively secure
multiplications, using MultCheck′1. The entire procedure can be executed in
Zpk without the need to extend to Zpk+v .

The number of rounds for the online phase is d+ 4, as we require four rounds
to execute MultCheck′1, and the total communication for the online phase, per
multiplication gate, is

log2(p) · k · (PassMultdata + MultCheck1,data),

where PassMultdata and MultCheck1,data are taken from Table 5.2.

If we look at the combined cost of the online and offline phases then we will
require Offlinerounds + d+ 4 rounds of communication and a data communication
cost of

Offlinedata + log2(p) · k · (PassMultdata + MultCheck1,data)

per multiplication, where Offlinedata is taken from Table 5.4. Again in Table 5.5
we will refer to the three different combined costs per multiplication as Totalx.

Protocol5:

Our final approach is based upon the technique in [CGH+18]. At the start of
the protocol, in a (very short) offline phase a sharing for an unknown, secret
random value [α]k+v is generated. This value is used as an information theoretic
MAC key, similar to the SPDZ approach.

In the online phase each wire value x is held as two shared values {[x]k+v, [α ·
x]k+v}. To multiply two values x and y we execute a passively secure
multiplication twice, once with [x]k+v and [y]k+v to obtain [x · y]k+v, and
one with [x]k+v and [α · y]k+v to obtain [α · x · y]k+v. In a short post-processing
phase the MAC values on all multiplication gates and all input and output
wires are checked using the MacCheck procedure. To ensure the security of the
MacCheck procedure all computation need to be performed in Zpk+v .

COMPLETE PROTOCOLS 113

The data cost for the preprocessing can be amortized away over all
multiplications, as we only need a single [α]k+v, regardless of the total number
of multiplications we need to perform. Thus, there is no cost essentially to the
offline phase.

The number of rounds for the online phase is d+ 4, as we require four rounds
to execute MacCheck, and the total communication for the online phase, per
multiplication gate, is

log2(p) · (k +m) · (2 · PassMultdata + MacCheckdata),

where PassMultdata and MacCheckdata are taken from Table 5.2.

It has to be noted that the protocol also needs to perform a (passive)
multiplication for every input wire, so as to obtain the initial authenticated
shares, as described in [CGH+18]. These multiplications also need to be checked
for consistency with the evaluation of MacCheck, but we focus on the cost per
multiplication here, and thus do not account for this extra cost.

We can now present a summary (in Table 5.5) of all these options, by way of
presenting their respective online and total communications costs (in number
of bits communicated per multiplication), for a variety of different scenarios,
access structures and base rings. Again, in all cases we utilize which ever of
KRSW or DN, for the passive multiplication procedure, which results in the
least amount of data transmitted for the specific LSSS under consideration. We
also use again the choices of (u, v, w,B) from Section 5.5 so that w/B can be
ignored, and a security parameter of κ = 128. In the table we mark in blue
the online variant which is most efficient for a given access structure, ring, and
ESP. This is almost always Protocol1. We also mark in gray the most efficient
protocol option when one is interested in the total cost. For small rings this is
always Protocol4 with Offline3 chosen as the pre-processing, for the others it is
Protocol5. The data for this table was generated with publicly available code10

that also provides a clean and extensible framework allowing for more online
and offline protocols.

Note, that in the case of Protocol4 and Offline3 the paper [ABF+17] obtains a
total cost of 21 bits per multiplication operation. As explained earlier this is
because they target a statistical security level of κ = 40, instead of our security
level of κ = 128.

Note that even when Protocol1 is not the most efficient choice, in practice one
might still prefer using this protocol as our analysis assumes the only interaction
occurs for multiplication. Most MPC protocols make use of OpenToAll

10https://github.com/KULeuven-COSIC/MPCEstimator

https://github.com/KULeuven-COSIC/MPCEstimator

114 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Access Protocol1 Protocol2
Structure Ring Scheme Mult Online Total1 Total2 Total3 Online Total

(3, 1) F2 Replicated KRSW 6 1554 1167 63 1161 1548
(3, 1) F2 Shamir Z2k DN 6 2328 1941 84 1548 2322
(3, 1) Z2128 Replicated KRSW 768 3840 3072 8067 2304 3072
(3, 1) Z2128 Shamir Z2k DN 768 5376 4608 10756 3072 4608
(3, 1) Fp Replicated KRSW 768 3840 3072 8067 2304 3072
(3, 1) Fp Shamir KRSW 768 3840 3072 8067 2304 3072
(5, 2) F2 Replicated KRSW 40 7780 5200 350 6450 7740
(5, 2) F2 Shamir Z2k DN 40 10360 7780 420 7740 10320
(5, 2) Z2128 Replicated KRSW 5120 20480 15360 44820 12800 15360
(5, 2) Z2128 Shamir Z2k DN 5120 25600 20480 53782 15360 20480
(5, 2) Fp Replicated KRSW 5120 20480 15360 44820 12800 15360
(5, 2) Fp Shamir KRSW 2560 12800 10240 26891 7680 10240

(10, 4) F2 Replicated KRSW 1680 231300 122940 12116 223170 229620
(10, 4) F2 Shamir Z2k DN 260 57020 40250 2451 45150 56760
(10, 4) Z2128 Replicated KRSW 215040 670720 455680 1550803 442880 455680
(10, 4) Z2128 Shamir Z2k DN 33280 145920 112640 313735 89600 112640
(10, 4) Fp Replicated KRSW 215040 670720 455680 1550803 442880 455680
(10, 4) Fp Shamir KRSW 10240 56320 46080 116528 33280 46080

Access Protocol3 Protocol4 Protocol5
Structure Ring Online Total Online Total1 Total2 Total3 Online Total

(3, 1) F2 1161 1161 9 1557 1170 57 774 774
(3, 1) F2 1935 1935 12 2334 1947 78 1548 1548
(3, 1) Z2128 2304 2304 1152 4224 3456 7299 1536 1536
(3, 1) Z2128 3840 3840 1536 6144 5376 9988 3072 3072
(3, 1) Fp 2304 2304 1152 4224 3456 7299 1536 1536
(3, 1) Fp 2304 2304 1152 4224 3456 7299 1536 1536
(5, 2) F2 5160 5160 50 7790 5210 310 2580 2580
(5, 2) F2 7740 7740 60 10380 7800 380 5160 5160
(5, 2) Z2128 10240 10240 6400 21760 16640 39696 5120 5120
(5, 2) Z2128 15360 15360 7680 28160 23040 48659 10240 10240
(5, 2) Fp 10240 10240 6400 21760 16640 39696 5120 5120
(5, 2) Fp 7680 7680 3840 14080 11520 24329 5120 5120

(10, 4) F2 121260 121260 1730 231350 122990 10435 12900 12900
(10, 4) F2 39990 39990 350 57110 40340 2191 23220 23220
(10, 4) Z2128 240640 240640 221440 677120 462080 1335642 25600 25600
(10, 4) Z2128 79360 79360 44800 157440 124160 280432 46080 46080
(10, 4) Fp 240640 240640 221440 677120 462080 1335642 25600 25600
(10, 4) Fp 35840 35840 16640 62720 52480 106280 25600 25600

Table 5.5: Costs of the Full Protocols in number of bits per multiplication, for
various access structures; κ = 128, p ≈ 2128

executions to open masked data for use in various function specific optimizations.
Using Protocol1 enables these protocol-specific OpenToAll executions to be
merged easily with the OpenToAll executions used in multiplication; thus
reducing the total round count. For other online protocols this merging can be
more complex.

Acknowledgements

We would like to thank Daniel Escudero and Tim Wood for conversations on
aspects of this work whilst it was carried out.

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and

BIBLIOGRAPHY 115

Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
FA8750-19-C-0502, by the FWO under an Odysseus project GOH9718N, and
by CyberSecurity Research Flanders with reference number VR20192203.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of any of the funders. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda
Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein.
Optimized honest-majority MPC for malicious adversaries - breaking
the 1 billion-gate per second barrier. In 2017 IEEE Symposium
on Security and Privacy, pages 843–862. IEEE Computer Society
Press, May 2017.

[ACD+19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
and Chen Yuan. Efficient information-theoretic secure multiparty
computation over Z/pkZ via galois rings. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS,
pages 471–501. Springer, Cham, December 2019.

[ACD+20] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
Matthieu Rambaud, Chaoping Xing, and Chen Yuan. Asymptot-
ically good multiplicative LSSS over Galois rings and applications
to MPC over Z/pkZ. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 151–180.
Springer, Cham, December 2020.

[ADEN19] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An
efficient passive-to-active compiler for honest-majority MPC over
rings. Cryptology ePrint Archive, Report 2019/1298, 2019.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. In Sushil
Jajodia and Javier López, editors, ESORICS 2008, volume 5283 of
LNCS, pages 192–206. Springer, Berlin, Heidelberg, October 2008.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPD Z2k : Efficient MPC mod 2k for dishonest

116 BIBLIOGRAPHY

majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798.
Springer, Cham, August 2018.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share
conversion, pseudorandom secret-sharing and applications to secure
computation. In Joe Kilian, editor, TCC 2005, volume 3378 of
LNCS, pages 342–362. Springer, Berlin, Heidelberg, February 2005.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure
multi-party computation from any linear secret-sharing scheme. In
Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 316–334. Springer, Berlin, Heidelberg, May 2000.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo
Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-scale honest-
majority MPC for malicious adversaries. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 34–64. Springer, Cham, August 2018.

[CRX19] Ronald Cramer, Matthieu Rambaud, and Chaoping Xing.
Asymptotically-good arithmetic secret sharing over Z/(pℓZ) with
strong multiplication and its applications to efficient MPC.
Cryptology ePrint Archive, Report 2019/832, 2019.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590.
Springer, Berlin, Heidelberg, August 2007.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Berlin, Heidelberg,
August 2012.

[EKO+20] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen,
Joonas Puura, and Mark Simkin. Use your brain! Arithmetic
3PC for any modulus with active security. In Yael Tauman Kalai,
Adam D. Smith, and Daniel Wichs, editors, ITC 2020, pages 5:1–
5:24. Schloss Dagstuhl, June 2020.

[Feh98] Serge Fehr. Span programs over rings and how to share a secret
from a module, 1998. MSc Thesis, ETH Zurich.

MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS 117

[Gá95] Anna Gál. Combinatorial methods in boolean function complexity,
1995. PhD Theses, University of Chicago.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party
computation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590. ACM
Press, November 2020.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious
transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830–842. ACM Press, October 2016.

[KRSW18] Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood.
Reducing communication channels in MPC. In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages
181–199. Springer, Cham, September 2018.

[Mau06] Ueli M. Maurer. Secure multi-party computation made simple.
Discrete Applied Mathematics, 154(2):370–381, 2006.

[SW19] Nigel P. Smart and Tim Wood. Error detection in monotone span
programs with application to communication-efficient multi-party
computation. In Mitsuru Matsui, editor, CT-RSA 2019, volume
11405 of LNCS, pages 210–229. Springer, Cham, March 2019.

5.A Proof of Theorem 5.1

In this Appendix we discuss the proof of Theorem 5.1. To do this assume that
M =

(
Zpk ,M, ε, φ

)
is an ESP computing a Q2 access structure Γ, such thatM

is not multiplicative. Then in two steps we can arrive at a multiplicative ESP. For
this consider the ESPs M0 =

(
Zpk ,M0, e1, φ

)
and M1 =

(
Zpk ,M1, e1, φ

)
and

let Γ0 and Γ1 be the access structures computed by M0 and M1 respectively.

Lemma 5.12

Suppose that MT
0 ·M1 = [e1,0, . . . ,0], then there exists a multiplicative

ESP computing Γ0 ∨ Γ1 of size at most 2(k + |P|).

Proof. By [Feh98], we have that ESP’s compute an additively homomorphic
perfect LSSS, say LSSS0 and LSSS1 for M0,M1. Consider the LSSS generated

118 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

by M0 and M1 simultaneously, so ⟨s0, ε⟩ = ⟨s1, ε⟩ = s. Let s = (s0, s1) be the
share vector with the ith coordinates of s0 and s1 sent to Pφ(i). Clearly, if and
only if A is a qualifying set for Γ0 ∨ Γ1 this set can reconstruct s from their
joint shares.

Now consider multiplication: Assume s′ ∈ Zpk is a secret with secret vectors
(s′0, s′1). Let s0 ∗ s′1 be the d-vector obtained by coordinate-wise multiplication.
Then

⟨1, s0 ∗ s′1⟩ = sT
0 · s′1 = bT

0 ·MT
0 ·M1 · b1

= bT
0 · E · b′1 as MT

0 ·M1 = E

= s · s′.

Let M j
i be the jth column vector of Mi and define the matrix M ′ such that

M ′ =
(
M1

0 M2
0 . . . Mn+1

0 0 . . . 0
M1

1 0 . . . 0 M2
1 . . . Mn+1

1

)
Then M = (Zpk ,M ′, e1, φ) corresponds to the constructed LSSS above,
[CDM00]: The product of (s0, s1) and (s′0, s′1) contains among its entries s0 ∗ s1,
and a recombination vector λ exists, so M is multiplicative.

This turns out to be useful as Fehr proved that given a mild inflation you can
change the target vector of an ESP, [Feh98]:

Lemma 5.13

Let M = (R,M, ε, φ), with M ∈ Mn×m(R) be an ESP computing
access structure Γ, then there exists an extended span program M′ =
(R,M ′, e1, φ), with M ′ ∈ Mn′×m′(R), computing Γ with n′ ≤ n + |P|
and m′ ≤ m+ 1.

This means we can prove the generalization of the theorem for Cramer et al.,
[CDM00], for Extended Span Programs, i.e. Theorem 5.1.

Proof. Of Theorem 5.1: Let Γ be an access structure, and define a boolean
function γ : P → {0, 1}, such that γ(A) = 0 if A /∈ Γ and γ(A) = 1 if A ∈ Γ.
Then we can define γ∗(X) = γ(X) where · indicates a flip, that is γ(A) = 0
then γ(A) = 1 and γ(A) = γ(P\A). By our assumption the access structure is
complete so if a subset A is unqualified, then A = P\A is qualified, therefore
γ(A) = 0⇔ γ∗(A) = 0, and therefore, tautologically, Γ = Γ ∨ Γ∗.

KRSW MULTIPLICATION COSTS 119

LetM =
(
Zpk ,M, ε, φ

)
be an ESP, such that ε = e1, computing Γ. Let Γ0 = Γ,

Γ1 = Γ∗, and M0 = M. By Lemma 5.13 all we need to show is that there
exists a M1 such that MT

0 ·M1 = E.

As described in [Gá95], there is a construction such that for a given MSP
computing Γ you can define a “dual” MSP that computes Γ∗ with the same
target vector. It is simple to see that this proof can be extended to work over
commutative unital Noetherian rings as the recombination vectors exist. In fact
this dual MSP can be computed efficiently if ker(MT) admits a basis. The only
thing that poses an issue is that in [Gá95] the target vector is 1. However, this
is easy to ensure as follows.

We define the d-dimensional matrix H as

H =

1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0

...
1 0 . . . 0 1

inducing a map such that

x =

x1
x2
. . .
xd

 7→ x + x1 =

x1

x2 + x1
. . .

xd + x1

Clearly this is a module isomorphism and by letting N = M ·HT we define an
MSP N exactly as M but with target vector 1. Let N ⋆ be its dual given by
[Gá95], then

M∗ =
(
Zpk∗,M∗ = N∗ ·

(
H−1)T

, ε, φ
)

is the dual MSP computing Γ∗ with target vector e1. Note that MT ·M∗ =
H−1 ·NT ·N∗ · (H−1)T = E and so the conditions for the lemma hold and the
theorem follows.

5.B KRSW Multiplication Costs

In this Appendix we recap on the optimized variant of the passively secure
multiplication method of [KRSW18] for replicated secret sharing (denoted the
KRSW method in what follows), and its generalization to arbitrary MSPs of
[SW19] (denoted the Smart–Wood method in what follows). The paper [SW19]

120 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

The Functionality FPRZS

This functionality outputs an additive sharing of zero to all players in a
given set.

On input (cnt, S) from all parties in a set S ⊂ P, if the counter
value is the same for all parties and has not been used before,
the functionality arbitrarily chooses some Pi∗ , and then for each
party Pi in S \ {Pi∗} samples ti ← F uniformly at random, fixes
ti∗ ← −

∑
i∈S\{Pi∗} ti and sends ti to party Pi for each i ∈ S\{Pi∗}

and ti∗ to Pi∗ .

Figure 5.13: The Functionality FPRZS

contains a few of typographical errors in the description of the algorithms, so
we correct those errors in our presentation below. We also give the calculations
for our nine different examples, so as to illustrate the methods in different
examples. We note that [SW19] is not necessarily more efficient than [KRSW18]
for replicated secret sharings; we illustrate this with an example below.

Both protocol variants make use of pseudo-random zero-sharings (PRZSs),
which are additive sharings of zero. These are used to mask shares before
sending them without changing the underlying secret. The functionality is
given in Figure 5.13. We do not provide the protocol here as it is given in
[KRSW18], but we note that we may trivially extend the protocol there to allow
the generation of PRZSs for any subset of parties if we assume pair-wise PRF
keys have been created during a one-time setup phase (as in the protocol given)
by each Pi computing

ti ←
∑

j ̸=i,j∈S

Fκi,j (cnt)− Fκj,i(cnt).

The key part of the multiplication algorithm, and the only part which requires
interaction, is the mechanism ΠConvert, (in Figure 5.15 for [KRSW18] and
Figure 5.17 for [SW19]), to transfer an additive secret sharing ⟨x⟩ amongst all
n parties, i.e. x = x1 + · · ·+ xn where Pi holds xi, into a secret sharing under
the desired MSP/ESP M = (R,M, ε, φ) where M ∈ Mm×d(R) is a matrix of
rank d.

KRSW MULTIPLICATION COSTS 121

ΠConvert for KRSW:

This methodology makes use of a (minor) extension of the earlier functionality
FAgreeRandom(D), which we give in Figure 5.14. One can see FAgreeRandom(D)
as being the special case of FAgreeRandom′(D,P). In practice one would execute
this (per multiplication) non interactively by first agreeing a seed for all
multiplications, and then expanding the seed as required for each multiplication
via a PRF.

Ideal Functionality FAgreeRandom′(D,S)

On input AgreeRandom(cnt) from all parties, if the counter value is the
same for all parties and has not been used before, the functionality
samples a value a← D, and sends a to all parties in S ⊂ P.

Figure 5.14: Ideal Functionality FAgreeRandom′(D,S)

It also uses a map χ : [n] −→ [d], which needs to be defined once and for
all, which is injective and for which χ(i) = k implies that φ(j) = i for a row
j which contains the standard basis vector ek. In addition, we have a map
ψ : [d] −→ [n] which maps a column of M to a player Pi. The map ψ is defined
so that ψ(χ(i)) = i, and for all k ̸∈ im(χ) we have that ψ(k) = i implies that
there is a row j of M consisting of ek such that φ(j) = i. The overall method
for executing the protocol ΠConvert is given in Figure 5.15.

ΠConvert for Smart–Wood:

In this case, protocol ΠConvert utilizes a second ESP which is said to be “good”.
The main criteria for this second ESP is that it has a relatively large number of
zero coefficients, and it is obtained from the original ESP via column operations.
In addition, we need to compute a mapping χ : [n] −→ [d] of parties to columns.
These indicate for each party how to map its additive sharing onto a column of
the sharing of the under the ESP. To generate the new ESP and χ we use the
algorithm in Figure 5.16.

We now illustrate the methods with our examples:

122 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

KRSW Protocol ΠConvert

At this point in the protocol, the parties have an additive sharing ⟨x⟩,
where Pi holds xi, and will convert it to a sharing under the ESP
(R,M, ε, φ) (which is assumed to be a replicated secret sharing scheme).
It makes use of the maps χ : [n] −→ [d] and ψ : [d] −→ [n] described in
the text.

1. For k ∈ [1, . . . , d] let Jk denote the set of all rows consisting of
the standard basis vector ek and let Ik denote the set of parties
{φ(j) : j ∈ Jk}

2. The parties call FPRZS with the command (cnt,P) to obtain a
PRZS, denoted hereafter by ⟨t⟩.

3. For k ̸∈ im(χ), define sj for j ∈ Jk by calling FAgreeRandom′(R, Ik).

4. For k ∈ im(χ), define i = χ−1(k) and player Pi compute, for
j ∈ Jk, the value sj ← xi + ti −

∑
sj′ , where the sum is over all

j′ such that φ(j′) = i and j′ is a vector ek with ψ(k) = j′. Party
Pi sends sj to party φ(j) for j ∈ Jk.

Figure 5.15: KRSW Protocol ΠConvert converting additive shares to shares in
the LSSS

5.B.1 Replicated (3, 1) Sharing

This secret sharing method for the threshold structure (n, t) = (3, 1) works for
any ring Zpk , for any size pk. Here our input ESP (R,M, ε, φ) is given by

M =

0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0

 ,

ε = (1, 1, 1),

φ(i) = ⌈i/2⌉.

KRSW MULTIPLICATION COSTS 123

Algorithm for computing a “good” ESP

The input is the multiplicative ESP M = (R,M, ε, φ). The output is a
map χ : [n] −→ [d] of party indices to columns, and a new ESP M′.

1. Perform column operations on M of M and the same on ε to
obtain an ESP M′ with the same φ and F but with matrix M ′

and target vector ε′ such that all of the standard basis vectors in
Rd, {ek}d

i=1 ⊂ Rd, appear as rows of M ′.

2. Define the map χ : [n] −→ [d] in the following way, making choices
so that im(χ) is as large as possible:

• If Pi owns a row which is a standard basis vector ek, and
εk ̸= 0, then set χ(i)← k;

• If Pi does not own such a row, assign Pi any column k in
which Pi owns a row j such that Mj [k] ̸= 0 and εk ̸= 0;

• If no such column exists, find any row j (not necessarily owned
by Pi), and any column k such that Mj [k] ̸= 0 and εk ̸= 0
and set χ(i) = k.

3. Output χ and M′.

Figure 5.16: Algorithm for computing a “good” ESP

KRSW Algorithm:

We now discuss the methodology for this example of KRSW, i.e. Figure 5.15.
We define in this case χ(1) = 3, χ(2) = 1 and χ(3) = 2. Protocol ΠConvert then
consists of the following steps, on input of x = x1 + x2 + x3, where xi is held
by player Pi.

1. We have J1 = {3, 5}, J2 = {1, 6} and J3 = {2, 4}, and I1 = {2, 3},
I2 = {1, 3} and I3 = {1, 2}.

2. Call FPRZS to generate t0 with
∑

i ti = 0.

3. Player P1 sends s2 = s4 = x1 + t1 to Player P2.

4. Player P2 sends s3 = s5 = x2 + t2 to Player P3.

5. Player P3 sends s1 = s6 = x3 + t3 to Player P1.

124 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Smart–Wood Protocol ΠConvert

At this point in the protocol, the parties have an additive sharing
⟨x⟩, where Pi holds xi, and will convert it to a sharing under the
ESP (R,M ′, ε′, φ) using the map χ (both output by the algorithm in
Figure 5.16)

1. The parties call FPRZS with the command (cnt,P) to obtain a
PRZS, denoted hereafter by ⟨t0⟩.

2. Each Pi splits xi + t0i as xi + t0i =
∑

k∈Ki∩supp(ε′) xi,k where Ki ←
({(χ(Pi)} ∪ ([d] \ im(χ))).

3. Each Pi sets ri,k ← xi,k/ε
′
k for each k ∈ Ki ∩ supp(ε′).

4. Each Pi sets ri,k ← R for each k ∈ Ki \ supp(ε′).

5. For each row j which is not a standard basis vector, the parties
do the following

(a) The parties call FPRZS with the command (cnt,P) to obtain
a PRZS amongst them, denoted hereafter by ⟨tj⟩.

(b) Each Pi computes aj
i ←

(∑
k∈Ki∩supp(ε′) M

′
j [k] · ri,k

)
+ tji ,

where Mj [k]′ denotes the kth element of row j of M ′.
(c) Party Pi sends aj

i to party φ(j).
(d) Party φ(j) computes sj ←

∑n
i=1 a

j
i .

6. Let Jk denote the rows which are the standard basis vector ek.
For each k execute:

(a) Let Xk = {Pi ∈ P : k ∈ Ki}. If |Xk| > 2 then call FPRZS
with the command (cnt, Xk) to obtain a PRZS ⟨tk⟩, otherwise
set tki = 0 for all i.

(b) Each party Pi ∈ Xk computes, for j ∈ Jk,

aj
i ←M ′j [k] · ri,k + tki = ri,k + tki ,

and then sends aj
i to party φ(j) (or retains it if φ(j) = Pi).

(Note that we always have M ′j [k] = 1 in this case.)

(c) For j ∈ Jk, party φ(j) sets sj ←
∑

i:Pi∈Xk
aj

i

7. This produces a sharing s under the ESP (R,M ′, ε′, φ) (and hence
by definition (R,M, ε, φ)).

Figure 5.17: Smart–Wood Protocol ΠConvert converting additive shares to shares
in the LSSS

KRSW MULTIPLICATION COSTS 125

It is easy to check in this case that this produces a sharing under the ESP
(R,M, ε, φ) of the value x. Thus, we require one execution of FPRZS and we
need to transfer three ring elements.

Smart-Wood Algorithm:

The algorithm in Figure 5.16 does not need to perform any column operations,
however the mapping χ can be defined as χ(1) = 2, χ(2) = 3 and χ(3) = 1.
This gives us im(χ) = {1, 2, 3}.

Protocol ΠConvert then consists of the following steps, on input of x = x1+x2+x3,
where xi is held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define K1 = {2}, K2 = {3}, K3 = {1}, we thus have X1 = {P3},
X2 = {P1} and X3 = {P2}.

3. Set r1,2 ← x1 + t01, r2,3 ← x2 + t02, r3,1 ← x3 + t03, with all other ri,j set
to zero.

4. We have s1 = r3,1, s2 = r1,2 and s3 = r2,3, thus,

(a) Player P1 needs to send player P3 the value s2,
(b) Player P2 needs to send player P1 the value s3,
(c) Player P3 needs to send player P1 the value s1.

It is easy to check in this case that this produces a sharing under the ESP
(R,M, ε, φ) of the value x. Thus, we require one execution of FPRZS and we
need to transfer three ring elements. Hence, in this case the two protocols have
the same cost, and are basically identical.

126 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.B.2 Replicated (5, 2) Sharing

This secret sharing method for the threshold structure (n, t) = (5, 2) works for
any ring Zpk , for any size pk. Here our input ESP (R,M, ε, φ) is given by a
matrix of dimension 30× 10,

M =

0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

,

ε = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

φ(i) = ⌈i/6⌉.

KRSW MULTIPLICATION COSTS 127

KRSW Algorithm:

We now discuss the methodology of KRSW, in Figure 5.15, for this example.
We define χ(1) = 3, χ(2) = 2, χ(3) = 1, χ(4) = 7, and χ(5) = 4. We also define
ψ(1) = 3, ψ(2) = 2, ψ(3) = 1, ψ(4) = 5, ψ(5) = 1, ψ(6) = 1, ψ(7) = 4, ψ(8) = 1,
ψ(9) = 1 and ψ(10) = 1. Protocol ΠConvert then consists of the following steps,
on input of x = x1 + x2 + x3 + x4 + x5, where xi is held by player Pi.

1. Call FPRZS to generate ti with
∑

i ti = 0.

2. For k ∈ {5, 6, 8, 9, 10} the players in Ik generate locally the values sj for
j ∈ Jk by using a call to FAgreeRandom′(R, Ik).

3. Player P1 computes s1 ← x1 + t1 − s2 − s3 − s4 − s5 − s6 and sends it to
P4 and P5 (as s21 and s27).

4. Player P2 computes s7 ← x2 + t2 and sends it to P4 and P5 (as s20 and
s26).

5. Player P3 computes s13 ← x3 + t3 and sends it to P4 and P5 (as s19 and
s25).

6. Player P4 computes s22 ← x4 + t4 and sends it to P2 and P3 (as s10 and
s16).

7. Player P5 computes s28 ← x5 + t5 and sends it to P2 and P3 (as s8 and
s14).

This requires one call to FPRZS, and five calls to FAgreeRandom′(R, Ik), and the
transfer of ten elements.

Smart-Wood Algorithm:

We now discuss the methodology for this example of Smart and Wood, i.e.
Figure 5.16 and Figure 5.17. The algorithm in Figure 5.16 does not need
to perform any column operations, however the mapping χ can be defined
as χ(1) = 3, χ(2) = 2, χ(3) = 1, χ(4) = 7 and χ(5) = 4. This gives us
im(χ) = {1, 2, 3, 4, 7}. This is our first interesting example as the ESP has more
columns than the number of parties.

Protocol ΠConvert then consists of the following steps, on input of x = x1 + x2 +
x3 + x4 + x5, where xi is held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

128 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

2. DefineK1 = {3, 5, 6, 8, 9, 10}, K2 = {2, 5, 6, 8, 9, 10}, K3 = {1, 5, 6, 8, 9, 10},
K4 = {5, 6, 7, 8, 9, 10} and K5 = {4, 5, 6, 8, 9, 10} we then have X1 = {P3},
X2 = {P2}, X3 = {P1}, X4 = {P5}, X5 = X6 = X8 = X9 = X10 = P,
X7 = {P4}.

3. Player Pi generates ri,k for k ∈ Ki such that
∑

k ri,k = xi + t0i , with all
other ri,k set to zero, i.e. they generate ri,k such that

(a) r1,3 + r1,5 + r1,6 + r1,8 + r1,9 + r1,10 = x1 + t01.
(b) r2,2 + r2,5 + r2,6 + r2,8 + r2,9 + r2,10 = x2 + t02.
(c) r3,1 + r3,5 + r3,6 + r3,8 + r3,9 + r3,10 = x3 + t03.
(d) r4,5 + r4,6 + r4,7 + r4,8 + r4,9 + r4,10 = x4 + t04.
(e) r5,4 + r5,5 + r5,6 + r5,8 + r5,9 + r5,10 = x5 + t05.

4. For k ∈ {1, 2, 3, 4, 7} and Pi ∈ Xk, player Pi sends ri,k to player φ(j) if
the jth row is the basis vector ek, i.e.

(a) Player P1 needs to send players P4 and P5 the value r1,3,
(b) Player P2 needs to send players P4 and P5 the value r2,2,
(c) Player P3 needs to send players P4 and P5 the value r3,1,
(d) Player P4 needs to send players P2 and P3 the value r4,7,
(e) Player P5 needs to send players P2 and P3 the value r5,4,

The players set sj = r⋆,j as appropriate. This step therefore requires
sending 10 elements in total.

5. For k ∈ {5, 6, 8, 9, 10} the players execute a PRZS on the set P to generate
tki for i = 1, . . . , 5. The value ri,k + tki is sent by player i to player φ(j) if
the jth row is the basis vector ek. For all j ∈ Jk, player φ(j) computes
sj as the sum of all values received. This step requires (in total) P1 to
send 10 elements, P2 and P3 a total of 12 elements, and P4 and P5 a total
of 13 elements. This in total 60 elements.

It is easy to check in this case that this produces a sharing under the ESP
(R,M, ε, φ) of the value x. Thus, we require six executions of FPRZS and we
need to transfer 70 elements. Thus, in this case Smart-Wood is much less
efficient than KRSW.

KRSW MULTIPLICATION COSTS 129

5.B.3 Replicated (10, 4) Sharing

This one is a bit big to write out, but the basic methodology for replicated
is the same (the underlying matrix has 252 columns and 1512 rows). The
methodology of Smart-Wood will be highly inefficient in this case, however the
optimized version of KRSW will produce a protocol ΠConvert which requires the
transmission of n · (n− t− 1) = 50 elements, and the execution of one FPRZS,
plus (252− 10) = 242 calls to FAgreeRandom′(R, Ik).

130 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.B.4 Shamir (3, 1) for large p

This secret sharing method for the threshold structure (n, t) = (3, 1) works for
any ring Zpk for which p > 4. Here our input ESP (R,M, ε, φ) is given by

M =

 1 1
1 2
1 3

 ,

ε = (1, 0),

φ(i) = i.

KRSW Algorithm:

This method cannot be applied as the underlying ESP does not correspond to
replicated secret sharing.

Smart-Wood Algorithm:

After the column operations, from the algorithm in Figure 5.16, our new ESP
(R,M ′, ε′, φ) becomes

M ′ =

 1 0
0 1
−1 2

 ,

ε′ = (2,−1),

φ(i) = i,

and we assign χ(1) = 1, χ(2) = 2, χ(3) = 2. Protocol ΠConvert then consists of
the following steps, on input of x = x1 + x2 + x3, where xi is held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define K1 = {1}, K2 = {2}, K3 = {2}, and then we have X1 = {P1} and
X2 = {P2, P3}.

3. Set r1,1 ← (x1 + t01)/2, r2,2 ← −x2 − t02, r3,2 ← −x3 − t03, with all other
ri,j set to zero.

4. The parties call FPRZS to generate t3i with
∑

i t
3
i = 0.

KRSW MULTIPLICATION COSTS 131

(a) Player P1 computes a3
1 = −1 · r1,1 + t31 and sends it to player P3.

(b) Player P2 computes a3
2 = 2 · r2,2 + t32 and sends it to player P3.

(c) Player P3 computes a3
3 = 2 · r3,2 + t33 and retains it.

5. Party P3 computes s3 = a3
1 + a3

2 + a3
3 = −r1,1 + 2 · r2,2 + 2 · r3,2.

6. Player one sets s1 = a1
1 = r1,1. Player P2 sets a2

2 = r2,2, and player P3 sets
a2

3 = r3,2 and sends it to party P2. Party P2 sets s2 = a2
2 +a2

3 = r2,2 +r3,2.

This requires two executions of FPRZS and the transmission of three ring
elements. To see that the sharing is correct under the original ESP (R,M, ε, φ),
we note that the shares of the three players are:

s1 = r1,1 = (x1 + t01)/2,

s2 = r2,2 + r3,1 = −x2 − t02 − x3 − t03,

s3 = −r1,1 + 2 · r2,2 + 2 · r3,2.

The value shared is equal to

2 · s1 − s2 = x1 + t01 + x2 + t02 + x3 + t03

= x1 + x2 + x3 = x.

The sharing is valid if s3 − 2 · s2 + s1 = 0, thus we see it is valid as we have

s3 − 2 · s2 + s1 = (−r1,1 + 2 · r2,2 + 2 · r3,2)− 2 · (r2,2 + r3,2) + r1,1

= 0.

132 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.B.5 Shamir (5, 2) for large p

Shamir secret sharing for large p can be defined using the Vandermonde-matrix
of the appropriate size. Note that this works for any ring Zpk , where p > 6.
The initial input for the ESP, M = (Zpk ,M, ε, ϕ), is given by

M =

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

ε = (1, 0, 0)

φ(i) = i

KRSW Algorithm:

This method cannot be applied as the underlying ESP does not correspond to
replicated secret sharing.

Smart-Wood Algorithm:

Doing the column operations as required we obtain the altered ESP, M ′ =
(Zpk ,M ′, ε′, φ), as follows:

M ′ =

1 0 0
0 1 0
0 0 1
1 −3 3
3 −8 6

ε = (3,−3, 1)

φ(i) = i

This allows us to define χ following Figure 5.16 as

χ(1) = 1, χ(2) = 2, χ(3) = 3, χ(4) = 1, χ(5) = 3,

where χ(4) and χ(5) are freely chosen, so could be changed for any of the other
columns. The protocol ΠConvert from Figure 5.17 then calls for the following
steps upon input of x = x1 + x2 + x3 + x4 + x5, where xi is held by player Pi.

KRSW MULTIPLICATION COSTS 133

1. Call FPRZS to generate t0 with ⟨t0⟩i = t0i such that
∑

i t
0
i = 0.

2. Note that J1 = {1},J2 = {2},J3 = {3} and define Ki and Xi for each
player as follows:

K1 = {1},K2 = {2},K3 = {3},K4 = {1},K5 = {3}

X1 = {P1, P4}, X2 = {P2}, X3 = {P3, P5}

3. Set r1,1 = (x1 + t01)/3, r2,2 = (−x2 − t02)/3, r3,3 = x3 + t03, r4,1 = (x4 +
t04)/3, r5,3 = x5 + t05 and set all other ri,k = 0.

4. Call FPRZS to generate ⟨t4⟩ and ⟨t5⟩.

(a) P1 generates a4
1 = r1,1 + t41 and a5

1 = 3 · r1,1 + t51. Then P1 sends a4
1

to P4 and a5
1 to P5.

(b) P2 generates a4
2 = −3 · r2,2 + t42 and a5

2 = −8 · r2,2 + t52. Then P2
sends a4

2 to P4 and a5
2 to P5.

(c) P3 generates a4
3 = 3 · r3,3 + t43 and a5

3 = 6 · r3,3 + t53. Then P3 sends
a4

3 to P4 and a5
3 to P5.

(d) P4 generates a4
4 = r4,1 + t44 and a5

4 = 3 · r4,1 + t54. Then P4 sends a5
4

to P5 and upon reception of all a4
i ’s computes s4.

(e) P5 generates a4
5 = 3 · r5,3 + t45 and a5

5 = 6 · r5,3 + t55. Then P5 sends
a4

5 to P4 and upon reception of all a5
i ’s computes s5.

5. Note that |Xk| ≤ 2 so tki = 0 for all k ∈ {1, 2, 3} and all i ∈ {1, 2, 3, 4, 5}.
Now generate the other aj

i :

(a) For X1, P1 generates a1
1 = r1,1 and P4 generates a1

4 = r4,1. P4 then
sends a1

4 to P1 who computes s1 = a1
1 + a1

4.
(b) For X2, P2 generates a2

2 = r2,2. P2 retains a2
2 and computes s1 = a2

2.
(c) For X3, P3 generates a3

3 = r3,3 and P5 generates a3
5 = r5,3. P5 then

sends a3
5 to P3 who computes s3 = a3

3 + a3
5.

This requires a total of 3 FPRZS executions and the transmission of ten ring
elements. All that is left to do is to show that this is indeed a correct sharing

134 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

under M′. Note that the shares, in full, are

s1 =a1
1 + a1

4 = r1,1 + r4,1,

s2 =a2
2 = r2,2,

s3 =a3
3 + a3

5 = r3,3 + r5,3,

s4 =
∑

i

a4
i = r1,1 − 3 · r2,2 + 3 · r3,3 + r4,1 + 3 · r5,3,

s5 =
∑

i

a5
i = 3 · r1,1 − 8 · r2,2 + 6 · r3,3 + 3 · r4,1 + 6 · r5,3.

The shared value is given by

3 · s1 − 3 · s2 + s3 = 3 · (r1,1 + r4,1)− 3 · r2,2 + r3,3 + r5,3

= x1 + t01 + x4 + t04 + x2 + t21 + x3 + t03 + x5 + t05 =
∑

i

xi = x

and is hence correct. To verify that the sharing is valid we only have to show
that s4 − s1 + 3 · s2 − 3 · s3 = 0 and that s5 − 3 · s1 + 8 · s2 − 6 · s3 = 0. This is
immediate as

s4 − s1 + 3 · s2 − 3 · s3 = (r1,1 − 3 · r2,2 + 3 · r3,3 + r4,1 + 3 · r5,3)

− (r1,1 + r4,1) + 3 · r2,2 − 3 · (r3,3 + r5,3) = 0,

s5 − 3 · s1 + 8 · s2 − 6 · s3 = (3 · r1,1 − 8 · r2,2 + 6 · r3,3 + 3 · r4,1 + 6 · r5,3)

− 3 · (r1,1 + r4,1) + 8 · r2,2 − 6 · (r3,3 + r5,3) = 0.

KRSW MULTIPLICATION COSTS 135

5.B.6 Shamir (10, 4) for large p

As before, for Shamir secret sharing with a large enough p, we obtain an ESP
with a Vandermonde matrix. This particular ESP requires p > 11, and is
defined by the following values (Zpk ,M, ε, φ):

M =

1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
1 6 36 216 1296
1 7 49 343 2401
1 8 64 512 4096
1 9 81 729 6561
1 10 100 1000 10000

ε = (1, 0, 0, 0, 0)

φ(i) = i

KRSW Algorithm:

This method can not be applied as the underlying ESP does not correspond to
replicated secret sharing.

136 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

Smart-Wood Algorithm:

After performing column operations, we obtain the ESP over Zpk defined by

M ′ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −5 10 −10 5
5 −24 45 −40 15
15 −70 126 −105 35
35 −160 280 −224 70
70 −315 540 −420 126

ε′ = (5,−10, 10,−5, 1)

φ(i) = i

As ε′k ̸= 0 for all k, the mapping χ can be arbitrarily chosen for players 6 through
10. In this example, we will choose χ(i) = i, 1 ≤ i ≤ 5 and χ(i) = 5, 6 ≤ i ≤ 10.

We now trace through the steps taken in Figure 5.17 to determine the
communication cost of the conversion protocol from a full threshold additive
sharing onto our ESP. The parties hold x = x1 + x2 + x3 + x4 + x5 + x6 + x7 +
x8 + x9 + x10.

1. All parties obtain a PRZS ⟨t0⟩

2. The values Ki are defined as Ki = {χ(i)}, as Imχ = [d], so every player
splits xi + t0i = xi,χ(i)

3. From these xi,χ(i), we obtain the values ri,χ(i), namely:

• r1,1 = (x1 + t01)/5
• r2,2 = (−x2 − t02)/10
• r3,3 = (x3 + t03)/10
• r4,4 = (−x4 − t04)/5
• r5,5 = x5 + t05

• r6,5 = x6 + t06

• r7,5 = x7 + t07

• r8,5 = x8 + t08

KRSW MULTIPLICATION COSTS 137

• r9,5 = x9 + t09

• r10,5 = x10 + t010

4. Since ε′ has no zero entries, nothing happens in this step

5. (a) The parties generate the PRZSs ⟨tj⟩, j = 6 . . . 10
(b) party P6 receives:

• from P1 the value (x1 + t01)/5 + t61
• from P2 the value (x2 + t02)/2 + t62
• from P3 the value x3 + t03 + t63
• from P4 the value 2 · (x4 + t04) + t64
• from Pi for i = 5, 7, 8, 9, 10 the value 5 · (xi + t0i) + t6i

and sums it to obtain s6

(c) Similarly, players Pj , 7 ≤ j ≤ 10 each also receive 9 ring elements, of
the form αj

χ(i) · (xi + t0i) + tji , with αj
i = Mj [i]/ε′i:

• α7 = (1, 12/5, 9/2, 8, 15)
• α8 = (3, 7, 63/5, 21, 35)
• α9 = (7, 16, 28, 224/5, 70)
• α10 = (14, 63/2, 54, 84, 126)

which they also sum to obtain sj

6. Note the sets Jk = {k}, 1 ≤ k ≤ 5, Xk = {Pk}, 1 ≤ k ≤ 4 and X5 = {Pi |
5 ≤ i ≤ 10}.

(a) Parties P5, . . . , P10 obtain the PRZS ⟨t5⟩.
(b) The same parties Pi then compute a5

i = xi + t0i + t5i and send it to
P5. Hence, this costs 5 ring elements of communication.

Further communication is not needed.

We see that execution of this conversion protocol costs a total of 7 executions
of FPRZS, which could be brought down to 6 by assigning χ(i) = i − 5 for
6 ≤ i ≤ 10 as that removes the need for a PRZS in step 6. A total of 50 ring
elements need to be communicated.

138 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

At the end of this process, the players Pi hold the following shares si:

s1 = (x1 + t01)/5

s2 = (−x2− t02)/10

s3 = (x3 + t03)/10

s4 = (−x4 − t04)/5

s5 =
∑

5≤i≤10
xi + t0i + t5i

s6 = (x1 + t01)/5 + (x2 + t02)/2 + x3 + t03 + 2 · (x4 + t04)

+
∑

5≤i≤10
5 · (xi + t0i)

sj=7,...,10 = αj
1 · (x1 + t01) + αj

2 · (x2 + t02) + αj
3 · (x3 + t03) + αj

4 · (x4 + t04)

+
∑

5≤i≤10
αj

5 · (xi + t0i)

It can then be verified that ⟨ε′, (s1, s2, s3, s4, s5)⟩ is equal to the shared secret x,
and the underlying parity check matrix is satisfied by the resulting share vector.

KRSW MULTIPLICATION COSTS 139

5.B.7 Shamir (3, 1) for Z2k

For the case of Shamir over Z2k we refer back to the example in Section 5.2.5,
where it can be seen how the matrix M is derived. The rest of the ESP,
M = (Z2k ,M, ϵ, φ) is defined as follows:

M =

1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
0 1 0

ε = (1, 0, 0)

φ(i) = ⌈i/2⌉

KRSW Algorithm:

This method can not be applied as the underlying ESP does not correspond to
replicated secret sharing.

Smart-Wood Algorithm:

The first step is to do column operations to obtain the new ESP M′ =
(Z2k ,M ′, ε′, φ):

M ′ =

1 0 0
0 0 1
1 −1 1
0 1 1
1 0 1
0 1 0

ε′ = (1,−1, 0)

and φ as previously defined. It is easily checked that the access structure stays
the same and this will be left to the reader. The map χ is then defined as
follows χ(1) = 1, χ(2) = 2, χ(3) = 2. Note that this means that Im(φ) = {1, 2}
and therefore not surjective. Now ΠConvert comes into action once more on input
of x = x1 + x2 + x3, where xi is held by Pi.

140 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define the Ki, Xi and Ji as follows:

(a) K1 = {1, 3},K2 = {2, 3},K3 = {2, 3}.
(b) X1 = {P1}, X2 = {P2, P3}, X3 = {P1, P2, P3}
(c) J1 = 1,J2 = 6,J3 = 2

3. Define r1,1 = x11 + t01, r2,2 = −x2,2 − t02, r3,2 = −x3,2 − t03 and ri,3 =
Rand(R) for all i. Let all other ri,j = 0.

4. For j ∈ {3, 4, 5} run FPRZS to generate ⟨tj⟩ with shares denoted tji and∑
i t

j
i . Then

(a) P1 computes a3
1 = r1,1 + t31, a4

1 = t41, a5
1 = r1,1 + t51 and sends a3

1, a
4
1

to P2 and a5
1 to P3.

(b) P2 computes a3
2 = −r2,2 + t32, a4

2 = r2,2 + t42, and a5
2 = t51 and sends

a5
2 to P3, then P2 computes s3 =

∑
i a

3
i and s4 =

∑
i a

4
i .

(c) P3 computes a3
3 = −r3,2 + t33, a4

3 = r3,2 + t43, and a5
3 = t53, and sends

a3
3 and a4

3 to P2, then P3 computes s5 =
∑

i a
5
i .

5. Note that |X3| > 2, hence run FPRZS to generate ⟨t2⟩ with corresponding
shares t2i and set t1 = t6 = 0. Then

(a) For X1, P1 computes a1
1 = r1,1 and retains a1

1. Then P1 sets s1 = a1
1.

(b) For X2, P2 computes a6
2 = r2,2 and P3 computes a6

3 = r3,2 and P2
sends a6

2 to P3. Then P3 sets s6 = a6
2 + a6

3.
(c) For X3, P1 computes a2

1 = r1,3 + t21, P2 computes a2
2 = r2,3 + t22, and

P3 computes a2
3 = r3,3 + t23 Then P1 and P3 send a2

1 and a2
3 to P2

respectively. Then P2 sets s2 = a2
1 + a2

2 + a2
3.

Which concludes the ΠConvert protocol. Summarizing we can see that there are
two calls to FPRZS, while six ring elements are communicated in step 4 and
three ring elements are communicated in step 5. This leads to a total of nine
sent elements.

KRSW MULTIPLICATION COSTS 141

This produces a sharing with shares

s1 =a1
1 = r1,1 = x1 + t01,

s2 =a2
1 + a2

2 + a2
3 = r1,3 + r2,3 + r3,3 = Rand1(R) + Rand2(R) + Rand3(R),

s3 =a3
1 + a3

2 + a3
3 = r1,1 − r2,2 − r3,2 = x1 + x2 + x3,

s4 =a4
1 + a4

2 + a4
3 = r2,2 + r3,2 = −x2 − t02 − x3 − t03,

s5 =a5
1 + a5

2 + a5
3 = r1,1 = x1 + t01 − x3 − t03,

s6 =a6
2 + a6

3 = r2,2 + r3,2 = −x2 − t20 − x3 − t03.

Then to check that this is a correct we first check the shared value, which is
correct:

s1 − s6 = x1 + t01 + x2 + t20 + x3 + t03 =
∑

i

xi = x

Then we show that the sharings are correct, by verifying that the parity check
matrix (of the original ESPM) when applied to this share vector results in the
zero vector,

s3 − s1 − s6 = r1,1 − r2,2 − r3,2 − r1,1 + r2,2 + r3,3 = 0

s4 − s6 = 0

s5 − s1 = 0

142 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.B.8 Shamir (5, 2) for Z2k

We construct the original matrix M similarly to the example in section 5.2.5,
where we now need to work over an extension of degree 3. The ESP (Z2k ,M, ε, φ)
then becomes

M =

1 0 0 1 0 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 0
1 1 0 0 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 0 1
1 1 0 1 0 1 1
0 1 1 1 1 0 0
0 1 1 0 0 0 1
1 0 1 0 1 1 0
0 1 1 0 0 1 1
0 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 0 0 0 0 1
0 0 0 1 0 1 1

ε = (1, 0, 0, 0, 0, 0, 0)

φ(i) = ⌈i/3⌉

KRSW Algorithm:

This method can not be applied as the underlying ESP does not correspond to
replicated secret sharing.

KRSW MULTIPLICATION COSTS 143

Smart-Wood Algorithm:

As must be familiar by now, we start with the column reduction of M to M ′ with
corresponding ε′. Note that the sharing of x is given by x = x1 +x2 +x3 +x4 +x5

M ′ =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
2 3 4 −2 −1 −2 0
0 2 3 −2 −2 −1 2
1 0 −1 2 1 1 −2
−1 1 1 −1 −1 0 2
−1 −1 −1 0 1 1 1

1 0 −1 1 1 1 −1
−1 0 1 −1 −1 0 2
−1 −1 −2 0 1 1 1

ε = (1, 0, 0, 1, 0, 0,−1)

Having obtained this we can define χ : [n] 7→ [d] by χ(1) = 1, χ(2) = 4, χ(3) = 7,
χ(4) = 1, χ(5) = 4. From here we call ΠConvert doing the steps as follows:

1. Call FPRZS to obtain sharing ⟨t0⟩ such that
∑

i t
0
i = 0.

2. Define Xi and Ji as follows:

(a) K1 = K4 = {1, 2, 3, 5, 6},K2 = K5 = {2, 3, 4, 5, 6},K3 =
{2, 3, 5, 6, 7}

(b) X1 = {P1, P4}, X4 = {P2, P5}, X7 = {P3}, X2 = X3 = X5 = X6 =
{P}

(c) Ji = i for i ∈ {1, . . . , 7}.

3. Define r1,1 = x1,1 + t01, r2,4 = x2,4 + t02, r3,7 = −x3,7 − t03, r4,1 = x4,1 +
t04, r5,4 = x5,4 + t05. Let ri,2, ri,3, ri,5, ri,6 ← R for all i ∈ [n] and let all
other ri,j = 0.

4. For j ∈ {8, . . . , 15} run FPRZS to generate ⟨tj⟩ with shares denoted tji and∑
i t

j
i = 0. Then

144 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

(a) P1 computes a8
1 = 2 · r1,1 + t81,a9

1 = t91, a10
1 = r1,1 + t10

1 , a11
1 =

−r1,1 + t11
1 , a12

1 = −r1,1 + t12
1 , a13

1 = r1,1 + t13
1 , a14

1 = −r1,1 + t14
1 ,

a15
1 = −r1,1 + t15

1 . P1 then sends a8
1 and a9

1 to P3, a10
1 , a

11
1 , and a12

1
to P4, and a13

1 , a
14
1 , a

15
1 to P5.

(b) P2 computes a8
2 = −2 ·r2,4 + t82, a9

2 = −2 ·r2,4 + t92, a10
2 = 2 ·r2,4 + t10

2 ,
a11

2 = −r2,4 + t11
2 , a12

2 = t12
2 a13

2 = r2,4 + t13
2 , a14

2 = −r2,4 + t124,
a15

2 = t15
2 . P2 then sends a8

2 and a9
2 to P3, a10

2 , a
11
2 , and a12

2 to P4,
and a13

2 , a
14
2 , a

15
2 to P5.

(c) P3 computes a8
3 = t83, a9

3 = 2 · r3,7 + t93, a10
3 = −2 · r3,7 + t10

3 ,
a11

3 = 2·r3,7+t131, a12
3 = r3,7+t132, a13

3 = −r3,7+t13
3 , a14

3 = 2·r3,7+t14
3 ,

and a15
3 = r3,7 + t14

3 . P3 then sends a10
1 , a

11
1 , and a12

1 to P4, and
a13

1 , a
14
1 , a

15
1 to P5. Upon receipt of all a8

i , a9
i , P3 computes s8 and

s9.
(d) P4 computes a8

4 = 2 · r4,1 + t84, a9
4 = t94, a10

4 = r4,1 + t10
4 , a11

4 =
−r4,1 + t11

4 , a12
4 = −r4,1 + t12

4 , a13
4 = r4,1 + t13

4 , a14
4 = −r4,1 + t14

4 ,
a15

4 = −r4,1 + t15
4 . P4 then sends a8

4 and a9
4 to P3 and a13

4 , a
14
4 , a

15
4 to

P5. Upon receipt of all a10
i , a11

i , and a12
i , P4 computes s10, s11, and

s12.
(e) P5 computes a8

5 = −2 ·r5,4 + t85, a9
5 = −2 ·r5,4 + t95, a10

5 = 2 ·r5,4 + t10
5 ,

a11
5 = −r5,4 + t11

5 , a12
5 = t12

5 a13
5 = r5,4 + t13

5 , a14
5 = −r5,4 + t154,

a15
5 = t15

5 . P5 then sends a8
5, a

9
5 to P3 and a10

5 , a11
5 , and a12

5 to P4.
Upon receipt of all a13

i , a
14
i , a

15
i , P5 computes s13, s14, and s15.

5. Note that |X2| = |X3| = |X5| = |X6| = |P| > 2 hence we run FPRZS
to obtain four sharings ⟨t2⟩, ⟨t3⟩, ⟨t5⟩, ⟨t6⟩. While tji = 0 for j ∈ {1, 4, 7}
Then

(a) For X1, P1 computes a1
1 = r1,1, and P4 computes a1

4 = r4,1. P1
then retains a1

1 and receives a1
4 from P4. Upon receipt of all a4

1 P1
computes s1 = a1

1 + a4
1.

(b) For X2, Each Pi computes a2
i = ri,2 + t2i and sends a2

i to P1 which
then computes s2 =

∑
i a

2
i .

(c) For X3, Each Pi computes a3
i = ri,3 + t3i and sends a3

i to P1 which
then computes s3 =

∑
i a

3
i .

(d) For X4, P2 computes a4
2 = r2,4 and P5 computes a4

5 = r5,4. P2
retains a4

2 and upon receipt of a4
5 from P5 computes s4 = a4

2 + a4
5.

(e) For X5, Each Pi computes a5
i = ri,5 + t5i and sends a5

i to P2 which
then computes s5 =

∑
i a

5
i .

(f) For X6, Each Pi computes a6
i = ri,6 + t6i and sends a6

i to P2 which
then computes s6 =

∑
i a

3
i .

KRSW MULTIPLICATION COSTS 145

(g) For X7, P3 computes a7
3 = r3,7 and sets s3 = r3,7.

This means that we, in total, obtain 5 calls to FPRZS and 52 ring elements
communicated. All that remains is that we show that the sharings are valid.

146 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

We approach this by first computing the shares

s1 = a1
1 + a4

1 = r1,1 + r4,1 = x1,1 + t01 + x4,1 + t04

s2 =
∑

i

a2
i =

∑
i

ri,2 ∈ R

s3 =
∑

i

a3
i =

∑
i

ri,3 ∈ R

s4 = a4
2 + a4

5 = r2,4 + r5,4 = x2,4 + t02 + x5,4 + t05

s5 =
∑

i

a5
i =

∑
i

ri,5 ∈ R

s6 =
∑

i

a6
i =

∑
i

ri,6 ∈ R

s7 = a7
3 = r3,7 = −x3,7 − t03

s8 =
∑

i

a8
i = 2 · r1,1 − 2 · r2,4 + 2 · r4,1 − 2 · r5,4

s9 =
∑

i

a9
i = −2 · r2,4 + 2 · r3,7 − 2 · r5,4

s10 =
∑

i

a10
i = r1,1 + 2 · r2,4 − 2 · r3,7 + r4,1 + 2 · r5,4

s11 =
∑

i

a11
i = −r1,1 − r2, 4 + 2 · r3,7 − r4,1 − r5, 4

s12 =
∑

i

a12
i = −r1,1 + r3,7 − r4,1

s13 =
∑

i

a13
i = r1,1 + r2,4 − r3,7 + r4,1 + r5,4

s14 =
∑

i

a14
i = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4

s15 =
∑

i

a15
i = −r1,1 + r3,7 − r4,1

KRSW MULTIPLICATION COSTS 147

Note that the recombination is correct if x = s1 + s4 − s7. Clearly this is the
case.

s1 + s4 − s7 = x1,1 + x4,1 + x2,4 + x5,4 + x3,7 = x1 + x2 + x3 + x4 + x5 = x

To verify the sharings are correct, we can simply verify the following equations
(which arise from the parity check matrix of the ESP M) all evaluate to zero
(a task which we leave to the reader)

s8 − 2 · s1 + 2 · s4 = 2 · r1,1 − 2 · r2,4 + 2 · r4,1 − 2 · r5,4 − 2 · (r1,1 + r4,1)

+ 2 · (r2,4 + r5,4)

s9 + 2 · s4 − 2s7 = −2 · r2,4 + 2 · r3,7 − 2 · r5,4 + 2 · (r2,4 + r5,4)− 2 · r3,7

s10 − s1 − 2 · s4 + 2 · s7 = r1,1 + 2 · r2,4 − 2 · r3,7 + r4,1 + 2 · r5,4 − (r1,1 + r4,1)

− 2 · (r2,4 + r5,4) + 2 · r3,7

s11 + s1 + s4 − 2s7 = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4 + r1,1 + r4,1

+ r2,4 + r5,4 − 2 · (r3,7)

s12 + s1 − s7 = −r1,1 + r3,7 − r4,1 + r1,1 + r4,1 − r3,7

s13 − s1 − s4 + s7 = r1,1 + r2,4 − r3,7 + r4,1 + r5,4 − r1,1 + r4,1 − r2,4

+ r5,4 + r3,7

s14 + s1 + s4 − 2 · s7 = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4 + r1,1 + r4,1 + r2,4

+ r5,4 − 2 · (r3,7)

s15 + s1 − s7 = −r1,1 + r3,7 − r4,1 + r1,1 + r4,1 − r3,7

148 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

5.B.9 Shamir (10, 4) for Z2k

For this final example we use a degree d4 = 4 extension to generate the matrix
that is defined in the ESPM = (Z2k ,M, ε, φ). The complete ESP then becomes

M =

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0
0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0
0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1
0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0
0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0
1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0
0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0
0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1
0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0
1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0
0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0
1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1
0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1
0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1
0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0
1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1
0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0
0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1
0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1

KRSW MULTIPLICATION COSTS 149

ε = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

φ(i) = ⌈i/4⌉

KRSW Algorithm:

This method can not be applied as the underlying ESP does not correspond to
replicated secret sharing.

Smart-Wood Algorithm:

For the Smart-Wood reduction we start by doing the column reduction, however
in this process a problem arises for the general case. In that the precise column
operations performed depend on the precise choice of k. In all cases however
we obtain a matrix M ′ such that

M ′ =
(

I17
N

)
for some dense matrix N ∈M23×17(Z2k). The costs then depend on the precise
choice of χ, which is affected by the number of zero entries in new target vector
ε′, and hence no k.

We examine two sub-cases, which are relevant for our main tables, either k = 128
or k = 1. In our description below we refer to a specific column reduction of M ,
obviously different column reductions will produce different outcomes.

k = 128: When k = 128 the new target vector ε′ from our specific column
reduction is non-zero except in position 16. This means that we can explicitly
define the function χ as follows: χ(1) = 1, χ(2) = 5, χ(3) = 9, χ(4) = 13,
χ(5) = 17, χ(6) = 2, χ(7) = 3, χ(8) = 4, χ(9) = 6, χ(10) = 7, which gives us

150 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

such that im(χ) = {1, 2, 3, 4, 5, 6, 7, 9, 13, 17}. From this we obtain
K1 ={1, 8, 10, 11, 12, 14, 15, 16},

K2 ={5, 8, 10, 11, 12, 14, 15, 16},

K3 ={9, 8, 10, 11, 12, 14, 15, 16},

K4 ={13, 8, 10, 11, 12, 14, 15, 16},

K5 ={17, 8, 10, 11, 12, 14, 15, 16},

K6 ={2, 8, 10, 11, 12, 14, 15, 16},

K7 ={3, 8, 10, 11, 12, 14, 15, 16},

K8 ={4, 8, 10, 11, 12, 14, 15, 16},

K9 ={6, 8, 10, 11, 12, 14, 15, 16},

K10 ={7, 8, 10, 11, 12, 14, 15, 16},
and X1 = {P1}, X2 = {P6}, X3 = {P7}, X4 = {P8}, X5 = {P2}, X6 = {P9},
X7 = {P10}, X9 = {P3}, X13 = {P4}, X17 = {P5}, and Xi = P for all
i ∈ {8, 10, 11, 12, 14, 15, 16}. From this we can present our analysis of the
algorithm in Figure 5.17.

• In step one we call FPRZS once to generate ⟨t0⟩

• In steps two to four no communication happens

• In step five we call FPRZS a total of 23 times to generate ⟨ti⟩ for i ∈
{18, . . . , 40}, and we communicate 207 = (40− 18) · (10− 1) ring elements.

• In step six, for the sets Xi of size one we do nothing, however for each of
the seven larger Xk we call FPRZS once to generate ⟨tk⟩. Each party in
these larger sets Xk then has to communicate its value aj

i to the party
φ(j), i.e. to 9 other parties. Thus, we need to communicate 63 = 7 · 9
elements in total.

This leads to a total cost of 31 = 1 + 23 + 7 calls to the FPRZS functionality
and 270 = 207 + 63 ring elements.

k = 1: When k = 1 our target vector will obviously have more zero components,
in particular for our column reductions we obtain

ε′ = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1).

KRSW MULTIPLICATION COSTS 151

This allows us to make the choice of χ (which itself depends on the placing of
the zero entries in N for our choice of column reduction) of χ(1) = 1, χ(2) =
4, χ(3) = 11, χ(4) = 13, χ(5) = 17, χ(6) = 3, χ(7) = 7, χ(8) = 8, χ(9) =
1, χ(10) = 12, such that Im(χ) = {1, 3, 4, 7, 8, 11, 12, 13, 17}. From this we
obtain

K1 ={1, 2, 5, 6, 9, 10, 14, 15, 16},

K2 ={2, 4, 5, 6, 9, 10, 14, 15, 16},

K3 ={2, 5, 6, 9, 10, 11, 14, 15, 16},

K4 ={2, 5, 6, 9, 10, 13, 14, 15, 16},

K5 ={2, 5, 6, 9, 10, 14, 15, 16, 17},

K6 ={2, 3, 5, 6, 9, 10, 14, 15, 16},

K7 ={2, 5, 6, 7, 9, 10, 14, 15, 16},

K8 ={2, 5, 6, 8, 9, 10, 14, 15, 16},

K9 ={1, 2, 5, 6, 9, 10, 14, 15, 16},

K10 ={2, 5, 6, 9, 10, 12, 14, 15, 16},

and hence, X1 = {P1, P9}, X3 = {P6}, X4 = {P2}, X7 = {P7}, X8 = {P8},
X11 = {P3}, X12 = {P10}, X13 = {P4}, X17 = {P5}, and Xi = P for all
i ∈ {2, 5, 6, 9, 10, 14, 15, 16}.

As before we can now analyse the algorithm in Figure 5.17.

• In step one we call FPRZS once to generate ⟨t0⟩

• In steps two to four no communication happens

• In step five we again call FPRZS a total of 23 times to generate ⟨ti⟩ for
i ∈ {18, . . . , 40}, and we communicate 207 = (40 − 18) · (10 − 1) ring
elements.

• In step six we now do something slightly different: For the sets Xi

of size one we again do nothing. For the set X1 of size two we need
to communicate one element. The eight sets Xi equal to P result in
eights calls to FPRZS, with each one resulting in nine elements being
communicated, i.e. 8 · 9 = 72 in total.

152 MPC FOR Q2 ACCESS STRUCTURES OVER RINGS AND FIELDS

This leads to a total cost of 32 = 1 + 23 + 8 calls to the FPRZS functionality
and a total transmission of 270 = 207 + 1 + 72 = 280 ring elements.

CHAPTER 6

Feta: Efficient Threshold
Designated-Verifier Zero-
Knowledge Proofs

Carsten Baum1 , Robin Jadoul2 , Emmanuela Orsini2 ,
Peter Scholl1 , and Nigel P. Smart2

1Dept. Computer Science, Aarhus University, Aarhus, Denmark.
2imec-COSIC, KU Leuven, Leuven, Belgium.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. Feta: Efficient threshold designated-verifier zero-
knowledge proofs. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 293–306. ACM Press,
November 2022.

153

https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0003-3567-3304

154 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Abstract: Zero-Knowledge protocols have increasingly become both popular
and practical in recent years due to their applicability in many areas such as
blockchain systems. Unfortunately, public verifiability and small proof sizes of
zero-knowledge protocols currently come at the price of strong assumptions,
large prover time, or both, when considering statements with millions of gates.
In this regime, the most prover-efficient protocols are in the designated verifier
setting, where proofs are only valid to a single party that must keep a secret
state.

In this work, we bridge this gap between designated-verifier proofs and public
verifiability by distributing the verifier efficiently. Here, a set of verifiers can
then verify a proof and, if a given threshold t of the n verifiers is honest and
trusted, can act as guarantors for the validity of a statement. We achieve this
while keeping the concrete efficiency of current designated-verifier proofs, and
present constructions that have small concrete computation and communication
cost. We present practical protocols in the setting of threshold verifiers with
t < n/4 and t < n/3, for which we give performance figures, showcasing the
efficiency of our approach.

My contributions: Main author
I was a main collaborator on the design of the protocols and responsible for the
full proof of concept implementation and its associated experiments.

6.1 Introduction . 156

6.1.1 Related Work . 157

6.1.2 Our Contribution . 159

6.1.3 Applications . 161

6.1.4 Techniques . 162

6.2 Preliminaries . 163

6.2.1 Shamir Sharing . 163

6.2.2 Digital Signatures . 164

6.2.3 Zero-knowledge Proofs . 165

6.2.4 Schwartz-Zippel Lemma . 166

6.2.5 Coin Flipping . 166

6.3 Distributed Verifier Zero-Knowledge Proofs 167

6.3.1 Zero-Knowledge in the Threshold Setting 167

FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS 155

6.3.2 Examples . 169

6.4 Preprocessing for distributed proofs with honest majority t < n/2 . 173

6.5 Distributed proof with t < n/4 corruptions 181

6.6 Distributed proof with t < n/3 corruptions 187

6.7 Experiments . 194

6.7.1 Results . 195

156 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

6.1 Introduction

A zero-knowledge proof of knowledge (ZKPoK) is an interactive protocol which
allows a prover to convince a verifier, given a statement x, that the prover knows
a witness w such that the pair (x,w) lies in some NP language L. This is done
in such a way that the verifier learns nothing but the validity of the statement,
i.e. they learn nothing about the witness w, only that the prover knows it.
ZKPoKs have a wide range of applications, especially in the burgeoning area of
blockchain [HBHW16], but also as building blocks of highly efficient signature
schemes [CDG+17] or to increase the security level of existing cryptographic
protocols from passive to active security in a black-box manner [GMW87].

There are various parameters that influence which ZKPoK scheme is suitable
for a certain application. For example, when using ZKPoKs for blockchains one
needs proofs that are publicly verifiable and non-interactive; namely the proof
is sent in a single message from the prover such that any verifier can verify it.
Another common requirement is that they are succinct, namely that the proof
has size and verification time that is sublinear in the size of the statement.

Therefore, most ZKPoKs such as SNARKs [BCG+13] and STARKs [BBHR19]
that are considered for practical applications within blockchains for instance,
are mainly optimized for small proof size and verification time (and are also
publicly verifiable and non-interactive). Their drawback is that prover running
time can be prohibitive for large statements, i.e. statements expressed by
arithmetic circuits with billions of gates. This is because the prover runtime
for all current practical succinct schemes has an inherent polylog(|x|) overhead
over the optimal O(|x|) proof time and because prover memory access is not
local1, which leads to inherent slowdowns for increasing |x|.

Modern MPC-in-the-Head ZKPoKs such as KKW [KKW18] or Limbo [DOT21]
have a proof size that is at least linear in |x|, with the unique exception of
Ligero [AHIV17] which achieves sub-linear proof for large enough statements.
In addition, they usually use a “light” inner proof (which is a passively-secure
MPC scheme) that requires O(|x|) computation, but must be repeated s/ log(s)
times to achieve negligible soundness error where s is the security parameter.

Alternative ZKPoKs for large statements, which also have a practically
efficient prover due to small concrete constants, are either based on garbled
circuits ([JKO13] and follow-ups) or vOLE-commitments [WYKW21, YSWW21,
BMRS21]). All of these prover-efficient schemes have the disadvantage that
they require the verifier to keep a secret state, i.e. they are designated-verifier

1There are theoretical works that achieve linear prover time such as e.g. [LSTW21], but to
the best of our knowledge they are not concretely efficient.

INTRODUCTION 157

ZKPoKs. This means that the proof can only be verified by a single party, who
must be identified before the proof is produced. This makes the application in
blockchains, where a proof may need to be verified by a set of validator nodes,
impossible.

One can mitigate the problem of a designated verifier by distributing the
verification among a larger set of parties. Here, each such verifier comes from a
pre-defined, possibly large set, leading to a form of distributed designated verifier
proof system. Now, if a majority of these verifiers is trusted, the statement of
the prover can be accepted as validated by a majority of third parties.

Distributing Verification. This distribution of verification has an impact on
the question of what a proof actually is, and also changes how protocols for
such a setting can be designed.

• If the verifier is distributed, an adversary may corrupt multiple verifiers, in
addition to the prover, in order to convince honest verifiers of the validity
of a false statement. This means that soundness must be redefined to
take this into consideration.

• When a proof is rejected, this might happen either if a prover does not have
a proof or if it is honest, but verifiers may prevent successful verification
of a proof. Hence, honest verifiers may want to distinguish these cases
in order to not blame an honest prover or verifier as corrupt. So in the
case of dishonest behaviour a security definition may require that honest
verifiers do not just abort, but they also identify one (or more) of the
cheating parties. This enables a form of cheater elimination.

• The distributed nature of the verifier may allow to obtain more efficient
protocols: while in standard zero-knowledge the verifier must always be
considered as fully corrupted, we may now be ok with only maintaining
zero-knowledge if a strict subset of the verifiers does not collude.

6.1.1 Related Work

Thresholdizing in zero-knowledge proofs has a long history. The earliest works
are those of [BD91] and [Bea91], both from 1991. In the work of [BD91] the
verifiers do not need to agree on the validity of the proof, and in addition
do not communicate directly. Our work is closer in spirit to that of [Bea91],
although with a modern security definition and practical, concrete efficiency.
In particular our security notion is UC-based, and captures issues related to

158 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

a dishonest prover and dishonest verifiers colluding, as well as (by definition)
providing a proof-of-knowledge. We also require that cheaters are identified
which we feel is important in applications (and is missing in all prior work).
The construction in [Bea91] is based, unsurprisingly for it’s time, on Verifiable
Secret Sharing (VSS), thus the protocol is highly inefficient compared to our
more modern approach. Whilst VSS enables identifiable abort, it is unclear
in [Bea91] how (or even if) this can be used to identify if a verifier and prover
collaborate to cheat.

In the 2000’s interests continued in this problem, but focused on proofs related
to languages based on discrete logarithms (for example proving that certain
discrete logarithm-based commitments satisfied some given properties). Work
in this vein included [ACF02], which focused on statements related to relations
between discrete logarithms. Their application are statements tailored for
systems using VSS in MPC. We essentially lift the definitions of [ACF02] to a
more general UC setting for arbitrary adversary structures, as well as extend
the definitions to general languages (and not just those related to discrete
logarithms).

Conceptually, our setting bears resemblance to the one considered in the MPC-
in-the-head paradigm [IKOS07] where the proof is verified by a set of simulated
verifiers. Compared to [IKOS07] we require that an adversarial prover can
only cooperate with a small set of corrupt verifiers, as we assume a majority of
verifiers to be honest.

There are other related works, which are similar but distinct from our own work.
For example, one related notion is the concept of distributed zero-knowledge
from [BBC+19], which looks at the case where the statement x is unknown to
any given verifier, and is instead secret shared. The protocols in that work only
support a limited class of languages, and do not consider identifiable abort,
and so are vulnerable to denial-of-service attacks from a malicious verifier. Our
notion can be seen as orthogonal to Multi-Prover Interactive Proofs [BGKW88],
where multiple provers act independently to convince a verifier. Our notion is
also complementary to the setting considered in [WZC+18] where the witness
w is shared among a set of provers. Instead, we only have one prover and w is
shared among the verifiers.

A relatively recent paper [BKZZ20] focuses on reducing the total amount of
entropy needed by a set of verifiers, if all verifiers are to verify the proof. This
is orthogonal to our work, as we require a joint/distributed verification where
some verifiers can be dishonest. However, the idea of reducing the entropy
requirement would be an interesting aspect to consider in the future. As would
extending the ideas of [BKZZ20] to more general problem statements, since
[BKZZ20] focuses on languages based on discrete logarithms.

INTRODUCTION 159

Another interesting orthogonal direction to our work is that of “Fair-Zero
Knowledge” introduced in [LMs05]. In this work a distributed-verifier notion
is presented, where a prover might leak the secret to a dishonest verifier via a
subliminal channel. Nevertheless, since our “online” proof stage only requires
broadcast interaction from the prover to the verifiers, fairness as in [LMs05] for
our type of proof systems might be interesting line for future work.

The renewed interest in the distributed verifier setting is shown by two recent
papers by Yang et al. [YW22] and Applebaum et al. [AKP22]. Both works
consider the case where a majority of verifiers are honest. Applebaum et al.
focus more on the theoretical side and study the minimal assumptions needed
to achieve round-optimal distributed verifier protocols; the work of Yang et al.
is similar to our approach and oriented to real-world efficiency, however does
not present an implementation and does not consider cheater identification,
thus only achieving security with selective abort.

6.1.2 Our Contribution

In this work, we formalize the notion of Distributed Verifier ZKPoKs (DV-
ZKPoKs) in the UC framework. We provide multiple constructions of such
protocols, all with cheater identification, that are secure against different
thresholds of corrupted verifiers2.

New definitions. We first present a formal definition of what it means for a
DV-ZKPoK to be secure in the UC framework. Let us first redefine the three
standard properties of ZKPoKs to be applicable to the threshold setting:

Distributed Correctness: If the prover has a witness, then the honest parties
either accept the proof or identify the same corrupted verifiers that
interfered with the proof.

Distributed Soundness: If the prover does not have a witness then honest
verifiers only accept with negligible probability, given not too many other
verifiers are corrupted. In addition, the honest verifiers either agree that
the prover does not have a witness, or will identify a set of corrupted
verifiers.

Distributed Zero-Knowledge: The corrupted verifiers learn no new inform-
ation beyond the fact that the statement is true.

2In our construction, the single (cheesy) verifier of the Mac-and-Cheese protocol [BMRS21]
has been crumbled into a large set of smaller verifiers. Thus, our protocol name Feta.

160 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Our definition will allow different adversarial structures for all of these properties.
This means that our definition also encapsulates protocols where e.g. soundness
breaks down if just one verifier is corrupted, but which are zero-knowledge even
if all verifiers are corrupted.

There are a number of “naive” protocols which enable such distributed verifier
zero-knowledge proofs using existing techniques. We will describe some of these
protocols, showing the applicability of our framework.

New protocols. We then present two efficient DV-ZKPoK protocols together
with necessary preprocessing protocols. These protocols are optimized for
t < n/4 and t < n/3 corruptions, respectively, where n is the number of
verifiers and t is the number of corrupted verifiers. Our protocols are plausibly
post-quantum secure, and require as setup assumptions a PKI as well as a
broadcast channel. The latter can easily be implemented if t < n/3 information
theoretically.

Implementations. We have implemented our protocols in C++, showing
concretely efficiency both in terms of prover and verifier time. For example, for
the case of t < n/4, the combined pre-processing and prover time for proving
knowledge of the pre-image of a single SHA-256 evaluation with n = 5 verifiers
is about 10 milliseconds, with a proof time of around 7 milliseconds. The
verification time is under 15 milliseconds. A circuit with a million AND gates
requires a total proof time of 96 milliseconds pre-processing and 30 milliseconds
for the proof generation. The verification time is 90 milliseconds. For n = 100
verifiers and t = 20 the million AND gate circuit times become 431 milliseconds
for pre-processing, 176 milliseconds to generate a proof and 219 milliseconds for
the 100 verifiers to verify it. This is with a single threaded implementation of
our protocols.

As remarked above the prior works on distributed verifier zero-knowledge have
all been for discrete logarithm based languages, as opposed to the general
languages considered in this chapter. In addition, they have considered different
and often less general security requirements, as we outlined above. Thus, to
compare our implementation we are left, with the admittedly unsatisfactory
situation of, comparison against either publicly verifiable or designated verifier
proof systems.

Our run times are all significantly smaller than the single instance publicly-
verifiable proofs of similar SHA-256 pre-images, using a system such as Ligero
[AHIV17]. Using machines less powerful than the ones we used in our
experiments, [AHIV17] give prover and verification times for a single pre-image

INTRODUCTION 161

of a SHA-256 evaluation of over 100 milliseconds. Our proof size, excluding
pre-processing, is also significantly smaller (8 KBytes vs 100’s of KBytes for
Ligero). Note, Ligero provides a publicly verifiable proof as opposed to our
distributed designated verifier proofs.

The Limbo system [DOT21], which again provides publicly verifiable proofs,
reports single threaded prover and verifier times for the same circuit of 50
milliseconds, using machines comparable to the ones in our experiments, with
their proof sizes being 42 KBytes.

The Mac-n-Cheese [WYKW21] and Quicksilver protocols [BMRS21], which
provide designated verifier proofs using a single threaded implementation can
achieve around 7 million AND gates per second in terms of prover/verification
time. Translating this to the 22.573 AND gate SHA-256 circuit would equate
to a prover/verification time of 3 milliseconds.

Thus, we see our prover/verification time of 6.5/10 milliseconds, for the SHA-256
circuit in the distributed verifier case, provides a compromise between slower
publicly verifiable proofs and faster designated verifier proofs.

The protocol for the case of t < n/3 is slightly less efficient, but still provides a
highly efficient methodology for performing distributed verifier zero-knowledge
proofs. Also in this case both prover and verification time are significantly
smaller than in publicly verifiable schemes like Ligero and Limbo.

Hence, we see that our notion of distributed designated verifier proofs can
enable more efficient practical zero-knowledge proofs when compared to publicly
verifiable proofs.

6.1.3 Applications

Protocols with distributed verification have a number of applications, mainly in
blockchains.

• For permissioned blockchains, which are popular for use in companies,
the validators (usually) authenticate the next block via majority voting.
Such validators could act as the distributed verifiers for a proof. In such
a situation the total number of validators is a handful, and thus the
techniques of this chapter could be used to validate a proof before the
next block is authenticated by the chosen validator.

• In permissionless blockchains with oracles (i.e. groups of parties that
vouch for certain external facts), the oracle parties could serve as verifiers

162 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

for our proofs. The oracles are e.g. trusted by a smart contract, and our
distributed verifier means that this trust can be minimized in the case of
proof verification. Oracles are sometimes also used in Layer-2 protocols on
the blockchain. For example, in commit-chains like NOCUST [KZF+18],
there is an operator responsible (i.e. an oracle) for committing the latest
state of user account balances to the main blockchain every epoch. In the
case of optimistic rollups (as in Arbitrum [KGC+18] and Optimism3), the
verification and state-progression are done off-chain by the validator (i.e.
an oracle) as well, while the final states (assertions) are published on the
blockchain. Our distributed verifier proofs can act as a balance between
optimistic rollups and full ZK-rollups. In all cases, the number of such
oracles is relatively small and so the techniques of this chapter could be
applied.

More generally, zero-knowledge with distributed verification can be used in all
zero-knowledge applications where the verifiers are known ahead of time.

6.1.4 Techniques

On a high level, our protocols can be described using the following four-step
paradigm:

1. The verifiers create consistent commitments to random values ri such
that only the prover can open these later. Here, if t or less verifiers are
corrupted, then they cannot reconstruct the committed values themselves.

2. The verifiers and the prover check together that the commitments to the
random values are indeed consistent among all verifiers, and that the
prover knows the openings. If not, then cheaters are identified. If they
are consistent, then the preprocessing of the DV-ZKPoK is considered as
finished.

3. In the online phase, the prover uses the ri to commit to w as well as
auxiliary information necessary to show that (x,w) ∈ R. This commitment
can ideally be done by sending one message via a broadcast channel.

4. Upon the prover having finished committing, the verifiers perform a proof
verification step. Here we aim for a “cheap” proof verification that only
requires the verifiers to communicate in O(1) rounds, with a message
complexity that is sublinear in |x| or |w| as well.

3https://community.optimism.io

https://community.optimism.io

PRELIMINARIES 163

To achieve this, our “preprocessing” phase lets the verifiers create many random
Shamir secret sharings as commitments, where the prover only learns the secret
being shared. Given the linearity of this secret sharing, consistency can easily
be established using a linear test. This test only requires communication that
scales in the number of parties but not |x| or |w|. Moreover, we show that
cheater identification can be achieved by additionally signing certain messages
in the preprocessing protocol.

In our online phase, our protocols let the prover commit both to w as well as
the intermediate wire values for a circuit C that evaluates to 0 iff w is a valid
witness for the statement x. The verifiers re-evaluate C based on the committed
w using the homomorphic properties of the commitment/secret sharing and
check if the intermediate wire values are consistent with w and that the output
of C(w) is 0. This only requires a depth-1 circuit to be evaluated by the verifiers.

In the first protocol (for t < n/4) we make use of error-detecting properties of
a Reed-Solomon code/Shamir sharing. The linear gates are free to evaluate
as the Shamir sharing is linearly homomorphic, while the multiplication is
performed by each verifier multiplying the input shares of a multiplication gate
locally. The bound of t < n/4 comes from having to perform error detection on
product codes (coming from degree 2 · t polynomials stemming from the share
multiplication), which is necessary to detect cheating during the multiplication
protocol by a verifier.

Our second protocol (for t < n/3) is slightly more complex and avoids the
verifiers having to multiply shares altogether. Instead, we let the prover commit
to slightly more data and use a checking procedure for multiplications that is
based on the Schwartz-Zippel Lemma, similarly to [BBC+19]. This means that
multiplication checks only require linear operations.

6.2 Preliminaries

6.2.1 Shamir Sharing

Our protocols are built on top of Shamir’s secret-sharing scheme [Sha79]. We
briefly recap on it here in order to fix the notation we will use in the rest of the
chapter.

A secret s, in a finite field F, is shared amongst n parties P = {P1, . . . , Pn} by
the sharing party defining a random degree t polynomial fs(X) whose constant
term is the value s. Assuming n > |F| and that the integers {1, . . . , n} are

164 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

mapped to distinct non-zero values α1, . . . , αn in F, each party Pi is given the
share s(i) = fs(αi) ∈ F. We denote such a sharing by ⟨s⟩t.

Note that this secret sharing scheme is linear, namely given β, δ, γ ∈ F and two
sharings ⟨x⟩t and ⟨y⟩t, both of degree t, parties can locally produce the sharing
⟨z⟩t, where z = β · x+ δ · y + γ, by computing

z(i) = β · x(i) + δ · y(i) + γ.

Also note that one can linearly combine sharings of different degrees to produce
a sharing of the maximal degree, i.e. given ⟨x⟩t1 and ⟨y⟩t2 then one can locally
produce ⟨x+ y⟩t, where t = max(t1, t2), which we shall write as ⟨x⟩t1 + ⟨y⟩t2 .

Reconstruction of a secret s, shared via ⟨s⟩t, requires t+ 1 correct share values
from different parties. It is well known that Shamir’s secret sharing scheme
defined as above is equivalent to a Reed-Solomon code [n, t+ 1, n− t] over F,
where the shares (fs(α1), . . ., fs(αn)) are viewed as a codeword. In particular,
when the number of dishonest parties is bounded by d and n > t + 2 · d, the
parties can robustly reconstruct a shared value ⟨s⟩t, so that any party who lies
about their sharings will be detected. In one of our protocols we will use the
fact that, if n > 4 · t and d < t we can robustly reconstruct a value for a sharing
of degree 2 · t.

Assuming n > t+2·d, we denote by RobustReconstruct(⟨s⟩t, d) the reconstruction
algorithm associated with Shamir’s scheme which outputs a pair (s, flag), where
either flag = (correct, ∅), indicating that all the shares are consistent with a
degree t sharing, or flag = (incorrect,D) where D indicates the parties who
input an inconsistent share.

6.2.2 Digital Signatures

Our basic protocols will make use of digital signatures, for which we use the
following two standard definitions.

Definition 6.1: Digital signature scheme

A digital signature scheme for message space M is given by the
polynomial time algorithms (KeyGen, Sign, Verify).

• KeyGen(1λ): On input a security parameter λ this randomized
algorithm outputs a public/private key pair (pk, sk).

• Sign(sk,m): On input of private key sk and a message m ∈ M,
this (potentially) randomized algorithm outputs a digital signature

PRELIMINARIES 165

σ.

• Verify(pk, σ,m): On input of a public key pk, a message m and a
purported signature σ, this algorithm outputs either true (meaning
accept the signature) or false (meaning reject the signature).

A digital signature scheme is said to be correct if for each m←M and
(pk, sk)← KeyGen(1λ), Verify(pk,Sign(sk,m),m) = true.

A digital signature scheme is said to be UF-CMA secure if the probability of
any adversary A winning the following game is negligible in λ

1. (pk, sk)← KeyGen(1λ).

2. (m∗, σ∗)← ASign(sk,·)(pk).

3. Output ‘win’ if and only if Verify(pk, σ∗,m∗) = true and m∗ was not
queried to A’s signing oracle.

6.2.3 Zero-knowledge Proofs

A standard zero-knowledge proof takes a statement x and a witness w from
some NP relation R. The prover P holds the pair (x,w) ∈ R, whilst the verifier
only has x. The goal of a zero-knowledge proof (of knowledge) is to convince
the verifier that x is in the language LR of statements that have a witness in R.
This is done by asserting that the prover holds w such that (x,w) ∈ R, while
no information about w (bar the fact that the prover knows it) is revealed to
the verifier. Informally, a zero-knowledge proof has three security properties:

Correctness: If (x,w) ∈ R then V always accepts.

Soundness: If P does not have w then V only accepts with negligible
probability.

Zero-Knowledge: There exists a simulator S that on input x can create
transcripts of protocol instances between P and V that make V accept.

In the designated verifier setting, the soundness only holds for a verifier that
has a secret state.

166 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

6.2.4 Schwartz-Zippel Lemma

One of our protocols will make use of the Schwartz-Zippel lemma for univariate
polynomials, which we state here.

Lemma 6.1: Schwartz-Zippel Lemma

Let F ∈ F[X] denote a non-zero polynomial of degree d over a field
F. Let S denote a finite subset of elements of F. If one selects r ∈ S
uniformly at random then

Pr[F (r) = 0] ≤ d

|S|
.

6.2.5 Coin Flipping

We will utilize at various points the ideal functionality FRand(P,M,F), described
in Figure 6.1. This functionality allows a set of parties P to sample M uniformly
random values from a finite field F such that each party learns these. It does
this in a manner which has identifiable abort, in the case that the adversary
aborts the execution of the protocol. The implementation of this functionality
is standard: The parties agree on a shared single seed using a non-interactive
commitment via broadcast, then open via broadcast, and then the seed is
expanded into the desired number of random values from F using a PRG.

The Ideal FRand(P,M,F) Functionality

On input (Rand, cnt) from all parties in P, if the counter value is the
same for all parties and has not been used before:

1. Sample ri ← F for i ∈ [M].

2. The values ri are sent to the adversary, and the functionality waits
for its input.

3. If the input is Deliver then the values ri are sent to all parties.
Otherwise, the adversary will return a non-trivial subset CA of the
dishonest parties. The value (Abort, CA) is returned to all parties.

Figure 6.1: Functionality FRand(P,M)

DISTRIBUTED VERIFIER ZERO-KNOWLEDGE PROOFS 167

6.3 Distributed Verifier Zero-Knowledge Proofs

Our definition of Distributed Verifier Zero-Knowledge Proofs (DV-ZKPoKs)
aims to generalize the notion of a Designated Verifier Zero-Knowledge Proof
to the threshold setting. Namely, we will have a set of designated verifiers
V1, . . . ,Vn who jointly verify the correctness of the proof using an interactive
protocol.

6.3.1 Zero-Knowledge in the Threshold Setting

As mentioned in Section 6.1 in a distributed verifier setting there might exist
multiple verifiers Vi, some of whom may collaborate with a potentially corrupt
prover P. For a DV-ZKPoK we therefore get the following intuitive properties.

Distributed Correctness: If (x,w) ∈ R then either all honest verifiers V
always accept or all honest verifiers agree on a set of cheating verifiers
CA.

Distributed Soundness: If P does not have w then honest verifiers only
accept with negligible probability.

Distributed Zero-Knowledge: There exists a simulator S that on input
x can create transcripts of protocol instances between P and verifiers
V1, . . . ,Vn that make verifiers accept.

Let V = {V1, . . . ,Vn} denote the set of verifiers. An access structure Γ on V is
a monotonically increasing subset of 2V , i.e., if S ∈ Γ then we have T ∈ Γ for
all T such that S ⊆ T ⊆ V . The adversary structure ∆ associated with Γ is the
set of all sets V \ S for S ∈ Γ.

When dealing with a potentially dishonest prover and a subset of potentially
dishonest verifiers, we can consider three different access structures related to
the three different properties of ZK proofs. We let the relevant access structures,
for the potentially dishonest verifiers, be denoted by ΓC (for Correctness), ΓS

(for Soundness) and ΓZ (for Zero-Knowledge). With their different associated
adversary structures being ∆C , ∆S and ∆Z . We allow different access structures
to provide better flexibility in applications, as well as more flexibility in designing
protocols. To aid the reader one could initially think of the threshold case of
ΓC = ΓS = ΓZ being all subsets of size greater than n− t, and ∆C = ∆S = ∆Z

being all subsets of the verifiers of size less than or equal to t.

168 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

We let VD denote the precise set of dishonest verifiers in a given protocol
instance. We desire that at the end of the protocol, the verifiers either output
Abort, Success or Fail. Here, Success or Fail imply that the proof was correct or
not, respectively, while Abort means that some verifiers or the prover may have
aborted. In all cases each honest party P will obtain a non-empty list of parties
who aborted.

Distributed Correctness.

We first discuss correctness; as usual this assumes an honest prover. In the
case of VD ̸∈ ∆C then the adversary has enough power to break correctness. In
this case some honest verifiers will abort, some will accept and some will fail
- no common guarantees can be made. Note in the case when VD ̸∈ ∆C , the
set C that each honest verifier identifies as corrupt parties in the case of abort,
can be different for each of them, and they may even identify honest parties as
corrupted. In the case of failure or success the honest verifiers may in addition
identify cheating verifiers. This is captured by the procedure Breakdown() in
our ideal functionality FDV−ZK, which can be found in Figure 6.2.

However, when VD ∈ ∆C then the parties obtain consensus of output: either all
honest verifiers output Success or they all output Abort. In the latter case, the
verifiers identify a set CA ̸= ∅ of dishonest verifiers which is the same for each
honest verifier. Consensus of output when VD ∈ ∆C is needed to avoid denial-
of-service attacks where a single dishonest verifier can make the honest verifiers
reject a valid proof. This is captured by the procedure CompleteWithAbort() in
our ideal functionality FDV−ZK.

Note that cheater identification is not necessary in the case of honest majority
access structures ΓC . This is because a simple majority vote will result in
the honest verifiers accepting the proof (assuming consensus on accept). In
the case of dishonest majority the ability for the honest parties to identify a
single dishonest party (with consensus) will act as a deterrent to verifiers to
act dishonestly. Thus even in the case of acceptance we allow the identification
of dishonest verifiers so as to allow our functionality to capture the dishonest
majority case.

Distributed Soundness.

Soundness considers the case of a dishonest prover. We require that if VD ̸∈ ∆S

then the adversary can get the honest verifiers to output anything it wants.
Which is again captured by the procedure Breakdown() in Figure 6.2.

DISTRIBUTED VERIFIER ZERO-KNOWLEDGE PROOFS 169

Protocol Assumptions ΓC ΓS ΓZ
Protocol 0 Broadcast Channel ∅ ∅ ∅
Protocol 0 no Broadcast Channel Q3 Q3 ∅
Protocol 1 - Q3 Q3 ∅
Protocol 2 Robust/identifiable abort MPC

Protocol for Γ
Γ Γ Γ

Protocol 3 Threshold structures tc < (n + 1)/3 ts < (n + 1)/3 − 1 tz < (n + 1)/3
Π4t Digital Signatures t < n/4 t < n/4 t < n/4
Π3t Digital Signatures t < n/3 t < n/3 t < n/3

Table 6.1: Comparison of Protocols

As we require the prover to input a witness w, if VD ∈ ∆S and if (x,w) ∈ R
then the worst P can do is get some honest verifiers to abort and identify a
cheating party. This is again captured by the procedure CompleteWithAbort()
in Figure 6.2. On the other hand, if (x,w) /∈ R then the best P can achieve is
to get some honest verifiers to abort and identify a cheating party (which could
include the prover). Again, this is captured by the procedure FailWithAbort()
in Figure 6.2.

Distributed Zero-Knowledge.

Finally, in the case of an honest prover, if VD ̸∈ ∆Z then the adversary has
enough power to break the zero-knowledge property and potentially learn
information about w. But if VD ∈ ∆Z then the adversary cannot learn w.

It is straightforward to change FDV−ZK so that it only has unanimous abort.
Another interesting strengthening is to not permit identifiable aborts if VD ∈ ∆C .
Since this setting seems to be not achievable if a majority of verifiers is corrupted
for any interesting protocol4, we have opted for a definition that is achievable
in both the honest and dishonest-majority setting.

6.3.2 Examples

We now explain the ideas behind our definition by presenting some naïve
protocols that FDV−ZK captures, with different access structures ΓC , ΓS , and
ΓZ . In Table 6.1, we present a comparison of four “naïve” protocols, alongside
our two more elaborate constructions, Π4t and Π3t.

4It is achievable if the prover broadcasts a publicly verifiable proof to all verifiers. If
the verifiers need to use a secret-shared state to validate the proof, then dishonest-majority
completeness implies that < n/2 verifiers are sufficient to perform this validation and possibly
reconstruct the secret state. But then, this implies that < n/2 corrupted verifiers can use
their knowledge to aid a dishonest prover to break soundness.

170 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Functionality FDV−ZK

This functionality communicates with n+ 1 parties P,V1, . . . ,Vn as well
as the ideal adversary S. We call P the prover and V = {V1, . . . ,Vn} the
verifiers. For simplicity, we write W = V ∪ {P}. The functionality is
instantiated with descriptions of three access structures ΓC ,ΓS ,ΓZ ⊆ 2V ,
and their associated adversary structures ∆C , ∆S and ∆Z . The adversary
structures denote which parties S can corrupt without leading to a loss
of correctness, soundness or zero-knowledge. Let init be a flag that is
initially ⊥.

Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆
W . Let H =W \D. If P ∈ D then we call the prover “corrupted”,
otherwise “honest”. We call VD = V ∩ D the corrupted verifiers
and VH = V \ VD the honest verifiers.

Init: On input (Init) by all parties in H:

1. Send (Init?) to S. If S responds with (OK) then send (InitOK)
to all parties in H and set init← ⊤. Otherwise, send (Abort)
to all parties in H.

ProveHonest: On input (Prove, x, w) by P ∈ H as well as (Prove, x)
by all parties in VH, if init = ⊤ and if (x,w) ∈ RL:

1. If VD ̸∈ ∆Z then send (Prove?, x, w) to S, otherwise send
(Prove?, x).

• If VD ̸∈ ∆C then run Breakdown().
• If VD ∈ ∆C then run CompleteWithAbort().

ProveDishonest: On input (Prove, x, w) by S if P ∈ D as well as
(Prove, x) by all parties in VH and if init = ⊤:

• If VD ̸∈ ∆S or VD ̸∈ ∆C then run Breakdown().
• If VD ∈ ∆S , VD ∈ ∆C and (x,w) ∈ RL then run

CompleteWithAbort().
• If VD ∈ ∆S , VD ∈ ∆C and (x,w) /∈ RL then run

FailWithAbort().

Figure 6.2: Functionality FDV−ZK for Distributed-Verifier ZK

DISTRIBUTED VERIFIER ZERO-KNOWLEDGE PROOFS 171

Functionality FDV−ZK (cont.)

Method Breakdown():

1. Wait for a message (Abort, A, F, S, C) from S where A,F, S
are disjunct sets, A ∪ F ∪ S = H, CA : H → 2W .

2. Send (Abort, x, CA(P)) to each P ∈ A, (Fail, x, CA(P)) to
each P ∈ F and (Success, x, CA(P)) to each P ∈ S.

Method CompleteWithAbort():

1. Wait for a message (Abort, b, CA) from S where CA ⊆ VD,
b ∈ {0, 1} and CA ̸= ∅ if b = 0.

2. If b = 0 then send (Abort, x, CA) to each P ∈ H, otherwise
send (Success, x, CA) to each P ∈ H.

Method FailWithAbort():

1. Wait for a message (Abort, b, CA) from S where CA ⊆ VD,
b ∈ {0, 1} and CA ̸= ∅ if b = 0.

2. If b = 0 then send (Abort, x, CA) to each P ∈ H, otherwise
send (Fail, x, CA) to each P ∈ H.

Figure 6.3: Functionality FDV−ZK for Distributed-Verifier ZK, continued

P0: Send a NIZK Assuming the existence of a functionality FNIZK, as well as
a broadcast channel, we can easily realize FDV−ZK. There is no preprocessing
(bar what is needed to set up the functionality FNIZK) and the prover simply
broadcasts the non-interactive proof. The verifiers then verify it using FNIZK
and then come to consensus on the output. In the case of acceptance, any
party who does not concur is determined to be an identified adversary. In that
case ΓC = ΓS = ΓZ = ∅, i.e. we can tolerate any set of adversaries possible.
Without a broadcast channel, ΓC and ΓS instead follow from e.g. standard
bounds on Byzantine agreement. The protocol can only be simulated if FNIZK
is straight-line extractable.

P1: Secret-Share a Proof Suppose we have a single access structure Γ over the
verifiers, we let ⟨·⟩ denote an information theoretic secret sharing scheme which
respects this access structure. A trivial protocol is to take a non-interactive two
party ZKPoK, for the prover to generate a proof π and then simply generate a

172 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

sharing ⟨π⟩ of that proof and distribute it to the verifiers. The verifiers then
(simply) publish their received share.

In terms of correctness we require ΓC = Γ is Q3
5. This follows as we require, in

the presence of dishonest verifiers, that honest verifiers output either success
with consensus, or output abort with consensus, and identify the cheater.

In terms of soundness we also require that ΓS = Γ is Q3, this follows as the
proof π is already sound. Thus, we require that for a (real or fake) proof that
the verifiers come to a consensus and either identify a cheating verifier, or
identify (in the case of a fake proof) that the prover has generated a fake proof.

In terms of zero-knowledge we have ΓZ = ∅ since the initial proof π is zero-
knowledge.

P2: Secret Share a Witness Instead of sharing the proof, the prover simply
shares the witness according to some access structure Γ, and then the verifiers
engage in an MPC protocol respecting Γ evaluating the circuit which verifies
the witness. The zero-knowledge property is weaker than before, as we have
ΓZ = Γ. If the dishonest verifiers are not in the allowed adversary structure ∆
then they can recover the witness and break the zero-knowledge property. The
correctness, and the associated ΓC , follow from the underlying MPC protocol
(which needs to be a protocol which is either robust, or with identifiable abort).
For soundness, and the associated ΓS , we obtain ΓS = ΓC by the correctness of
the MPC protocol.

The advantage of this example, over P1 is that the prover has almost no overhead
over secret-sharing the witness - it itself is not required to compute any kind of
proof. In comparison to this generic protocol is highly likely to be significantly
less efficient than our specialized protocols Π4t and Π3t, which can be seen
as variants of this protocol idea. Our protocols Π4t and Π3t perform this
optimization by removing the expensive circuit evaluation needed in a generic
MPC solution; this is done at the expense of the prover needing to provide more
share values for the circuit evaluation and not just sharing a witness.

P3: Joint MPC It may seem from the previous examples that we always
have ΓC = ΓS , but this does not have to be the case. Consider the following
construction, where we assume an MPC protocol run between the prover and
the verifiers. The verifiers have no input, but the prover inputs the witness w.

5A Q3 access structure can be simply thought of as one which admits robust opening, see
[HM97]

PREPROCESSING FOR DISTRIBUTED PROOFS WITH HONEST MAJORITY T < N/2 173

The common output (for the verifiers) is the evaluation of the checking circuit
on the witness, or an identified cheater.

The proof is interactively performed between the prover and the verifiers by
running the MPC protocol. Consider the case where ΓC is a threshold structure
on the n verifiers, with threshold tC . In this case we can have that tC < (n+1)/3
(because the prover acts honestly) and we can use an information theoretic robust
protocol to ensure correctness. This also ensures that we have tZ < (n+ 1)/3.

Now consider ΓS with a threshold structure with threshold tS . For the same
protocol and soundness we actually have an additional adversary (the prover),
and now require that tS + 1 < (n+ 1)/3. Thus, depending on n, we can have
different bounds on the maximum values of tC and tS and thus ΓC may not be
equal to ΓS .

6.4 Preprocessing for distributed proofs with honest
majority t < n/2

We begin by outlining the preprocessing phase for our proof in the presence of
an honest majority. This preprocessing can then be used with the actual online
phases of the proof, which require t < n/4 (Section 6.5) or t < n/3 (Section
6.6) corruptions. The ideal preprocessing functionality F t,n

Prep is described in
Figure 6.4. Both the protocols and functionality are defined over an extension
field of appropriate degree to allow for Shamir secret sharing with n parties.
We focus on the case of a binary field F2k with 2k > n, but our protocols are
easily adapted to Fq for any q > n. We also use a repetition factor ρ such that
2k·ρ > 2sec, where sec is our security parameter.

In the protocol Πt,n
Prep that implements the preprocessing functionality, and given

in Figure 6.5, each of the n verifiers Vi samples a random ri and sends a share
of ⟨ri⟩t to each other verifier and ri to the prover P. These values are checked
for consistency by forming a random linear combination using random values αi.
This random linear combination simultaneously guarantees the correctness of
the underlying secret known to the prover and the consistency of the shares on
a degree t polynomial. It can be repeated to achieve negligible soundness error.
Next, let ⟨r⃗⟩t be the vector representing all sharings made by the verifiers, and
let Mt be an (n− t)× n Vandermonde matrix. The verifiers locally compute
the sharings ⟨s⃗⟩t = Mt · ⟨r⃗⟩t, while the prover computes s⃗ = Mt · r⃗. This
randomness extraction ensures that out of these n shares, of which t are known
to the adversary, n − t uniformly random shares are recovered, unknown to
any other party than the prover. Several instances of this preprocessing phase

174 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Functionality F t,n
Prep

This functionality communicates with n + 1 parties P,V1, . . . ,Vn as
well as the ideal adversary S, where P denotes the prover and V =
{V1, . . . ,Vn} the verifiers. Let W = V ∪ {P} and t < n/2.

Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆
W . Let H =W \D. If P ∈ D then we call the prover “corrupted”,
otherwise “honest”. We call VD = V ∩ D the corrupted verifiers
and VH = V \ VD the honest verifiers.

Distribute Shares: On input (Shares, nS) from all parties

1. Sample nS random values si ∈ F2k for i ∈ [nS].
2. If P is corrupted then send {si}i∈[nS] to S.
3. Wait for a message (Abort, CA) from S where ∅ ≠ CA ⊆ D or

(Continue, {ŝ(p)
i }p∈VD,i∈[nS]).

• If S inputs Abort then (Abort, CA) is returned to each
party in H and the functionality aborts.

• If S inputs Continue then generate a Shamir sharing of
si of degree t for each i ∈ [nH], which we denote by ⟨si⟩t.
The individual Shamir shares are denoted by s(j)

i ∈ F2k

for j ∈ [n]. The sharing is chosen so that s(j)
i = ŝ

(j)
i . The

values si are passed to P if P ∈ H, whilst the values s(p)
i

are given to Vp for p ∈ VH.

Figure 6.4: Functionality F t,n
Prep for preprocessing in the case when t < n/2

are performed in parallel to obtain more than n− t secret sharings, with (at
least) an additional ρ sharings produced so as to verify the entire production is
correct.

The protocol assumes a PKI in which each verifier Vi has a public key pki and
a signing key ski, which enables them to authenticate sent messages m with
a digital signature Sign(ski,m). In the case when the consistency check fails,
this allows parties to reveal the shares that they obtained from each other.
This means that parties can identify cheaters by either identifying incorrectly
generated sharings or incorrectly formed messages. Signatures prevent dishonest
parties from framing honest parties by claiming to have obtained shares that

PREPROCESSING FOR DISTRIBUTED PROOFS WITH HONEST MAJORITY T < N/2 175

Protocol Πt,n
Prep

We let Mt be an (n − t) × n Vandermonde matrix for randomness
extraction. The protocol is parametrized by the number of verifiers n,
number of corruptions t < n/2 and two integers nS and ρ.
The protocol uses the hybrid functionality FRand. If FRand sends
(Abort, CA) then each party in the protocol outputs (Abort, CA) and
terminates.

Abort(ℓ): Each Vi holds r
(i)
v,j , σ

(i)
v,j for v ∈ [n] and j ∈

[⌈(nS + ρ)/(n− t)⌉], while P holds rv,j , σv,j for v ∈ [n] and
j ∈ [⌈(nS + ρ)/(n− t)⌉] (for simplicity, each Vi signs a share r(i)

i,j

for itself).

1. Each verifier Vi broadcasts {r(i)
v,j , σ

(i)
v,j}v,j , while P broadcasts

{rv,j , σv,j}v,j . If any signature σ(i)
v,j does not hold then identify

Vi as a cheater and abort. If any σv,j does not hold then
identify P as cheater and abort.

2. If for some i ∈ [n] it holds that T
(i)
ℓ ̸=

∑
v,j αv,j,ℓ · r(i)

v,j

then identify Vi as cheater and abort. If it holds that Tℓ ≠∑
j

∑
v αv,j,ℓ · rv,j then identify P as a cheater and abort.

3. For any Vv, if r(1)
v,j , . . . , r

(n)
v,j do not form a valid degree-t sharing

of rv,j then identify Vv as a cheater and abort.

Figure 6.5: Protocol for preprocessing with t < n/2

the honest party never sent.

Theorem 6.1

Assuming that Sign is an unforgeable signature scheme, then the protocol
Πt,n

Prep in Figure 6.5 securely implements the functionality F t,n
Prep in the

FRand-hybrid model against any static adversary corrupting at most
t < n/2 parties except with probability 2−ρ·k+1.

Before proving the theorem, we give three lemmas that will simplify the proof.
First, we show that if a dishonest party creates an incorrect sharing, then the
protocol enters Abort with overwhelming probability. Second, we show that if
a verifier sends an incorrect share to an honest prover, then the protocol enters

176 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Abort with overwhelming probability. Finally, we show that upon entering
Abort at least one dishonest party is identified, and only dishonest parties are
identified.

Lemma 6.2

Let VH = V ∩ H and assume t < n/2. For v ∈ [n], consider the shares
r

(i)
v,j for Vi ∈ VH and let Sv,j be the unique polynomials of smallest

degree over F2k such that Sv,j(i) = r
(i)
v,j . If there exist v, j such thata

deg(Sv,j) > t, then the protocol enters Abort except with probability
2−k·ρ.

aHere we use that t < n/2, as Sv,j could otherwise not be of degree > t.

Proof. Computing T
(i)
ℓ =

∑
j

∑
v αv,j,ℓr

(i)
v,j is the same as computing the

polynomials Sℓ =
∑

v,j αv,j,ℓ · Sv,j first and then evaluating Sℓ at points i
to obtain the shares T (i)

ℓ of the honest parties. This follows from the linearity
of Lagrange interpolation.

Any additional point T (v)
ℓ provided by the adversary through party Vv can

either lie on the polynomial Sℓ or not. If it does then Sℓ will keep its degree, if
not then the points T (1)

ℓ , . . . , T
(n)
ℓ must lie on a polynomial of larger minimal

degree. This means that the protocol enters Abort if any of the protocols Sℓ is
of degree > t, independent of the values T (v)

ℓ sent by S.

Let r = maxv,j{deg(Sv,j)}, by definition we have r > t. This means that for
some Sv,j the monomial Xr has a non-zero coefficient. Then any Sℓ will only
be of degree < r, i.e. the shares of honest parties will lie on a degree-< r
polynomial, if the coefficients of the monomials Xr of all Sv,j sum to 0 in Sℓ.
By the random choice of the αv,j,ℓ through FRand after these Sv,j are fixed, this
only happens with probability 2−k for a single Sℓ and with probability 2−kρ for
all S1, . . . , Sρ simultaneously.

Lemma 6.3

Let VH = V ∩H and t < n/2 and assume P ∈ H. For v ∈ [n], consider
the shares r(i)

v,j of Vi ∈ VH and let Sv,j be the unique polynomials of
degree t over F2k such that Sv,j(i) = r

(i)
v,j . Furthermore, let rv,j be the

values received by P. If there exist v, j such that Sv,j(0) ̸= rv,j , then
the protocol enters Abort except with probability 2−k·ρ.

PREPROCESSING FOR DISTRIBUTED PROOFS WITH HONEST MAJORITY T < N/2 177

Proof. Observe that αv,j,ℓ are only chosen through FRand after all r(i)
v,j , rv,j have

been fixed, v ∈ [n].

Assume that the protocol does not enter Abort, then for each ℓ ∈ [ρ] it holds
that ∑

v,j

αv,j,ℓrv,j =
∑
v,j

αv,j,ℓ · Sv,j(0)

which can be rewritten as

0 =
∑
v,j

αv,j,ℓ · (rv,j − Sv,j(0))

Write Sv,j(0) = rv,j + δv,j . By assumption, there must exist v, j such that
δv,j ̸= 0. Hence, it must hold that the δv,j chosen by the adversary lie in the
kernel of αv,j,ℓ which are chosen uniformly at random after δv,j are fixed. For
any ℓ, this happens with probability at most 2−k and with probability at most
2−kρ for all ℓ ∈ [ρ] simultaneously.

Lemma 6.4

Assuming unforgeability of Sign, then Abort always terminates with
at least one dishonest party being identified. Furthermore, it only
terminates identifying dishonest parties.

Proof. In Step 1 of Abort the protocol only identifies dishonest parties. This
is because honest parties would have asked for shares with valid signatures in
Step 1(a)iv of Distribute Shares. Similarly, we identify a dishonest prover as
an honest prover would have asked for correctly signed data in Step 1(a)v of
Distribute Shares.

In Step 2 we only identify dishonest parties, as honest parties would have
computed T

(i)
ℓ , Tℓ correctly.

Assuming we reach Step 3 without aborting, then all T (i)
ℓ , Tℓ were computed

correctly but either T (i)
ℓ do not form a polynomial of degree t or do not share

the secret Tℓ. If for each v, j the shares r(i)
v,j would form a degree-t sharing of

rv,j then the condition for entering Abort cannot be reached. Thus, there
must exist v, j such that the polynomial formed by r(i)

v,j is of larger degree or
reconstructs to a value that is not rv,j .

If Vv was honest then all r(1)
v,j , . . . , r

(n)
v,j revealed during Step 1 lie on a degree-

t polynomial. The protocol only identifies an honest party Vv in Step 3 if

178 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

r
(1)
v,j , . . . , r

(n)
v,j lie on a polynomial of degree t+ 1 or higher. As honest parties

report the shares of Vv honestly, this only happens if an incorrect r̃(i)
v,j is broadcast

by a corrupt Vi, together with a valid signature under skv (as we would have
otherwise aborted in Step 1). So an honest Vv is only identified as a cheater if
a signature was forged by Vi, contradicting the assumption that the signature
scheme is unforgeable. Similarly, an honest Vv would always send the correct
shared rv,j to P so P can only reveal r̃v,j that is inconsistent with r(1)

v,j , . . . , r
(n)
v,j

if it can forge a signature, contradicting the assumption. Therefore, any Vv

identified by Step 3 must be corrupted.

We can now give the simulation-based proof of Theorem 6.1.

Proof. (of Theorem 6.1) The simulator S obtains as input from the environment
the set D of corrupted parties and forwards this to F t,n

Prep. It furthermore sets
up a copy of FRand. If P ∈ H then S will simulate an honest prover. Moreover,
for each Vi ∈ H S will simulate an honest verifier. It will generally follow
the protocol, except if specified otherwise below. Initially, let CA = ∅. Send
(Shares, nS) in the name of all simulated honest parties to F t,n

Prep. If P ∈ D then
S obtains the shares si from F t,n

Prep. If at any point FRand outputs (Abort, CA)
then S sends (Abort, CA) to F t,n

Prep.

S simulates the honest verifiers Vi in Step 1(a)ii by sending uniformly random
r

(v)
i,j to each corrupted Vv. It then waits for the sharings of the dishonest parties

being sent to the simulated honest verifiers. If any of these sharings is of degree
> t for a dishonest verifier Vv then add v to the set CA, otherwise denote ⟨rv,j⟩t
as the secret sharings of the dishonest parties.

If P ∈ D then choose ri,j for the honest verifiers such that a prover following
Step 3 will obtain si as output, and send these ri,j to the corrupt P. This
is always possible using [BTH08]. If instead P /∈ D then choose uniformly
random ri,j for each honest verifier and wait for values r̃v,j being sent from the
dishonest verifiers to the simulated P . For any of these shares ⟨rv,j⟩t that does
not reconstruct to r̃v,j add v to CA. Finally, choose suitable r(p)

i,j for all honest
Vp to create valid sharings ⟨ri,j⟩t.

If the protocol enters Abort, then S follows Abort honestly but aborts the
simulation when a dishonest party provides a forged signature in Step 1 of
Abort. Additionally, it adds to CA any dishonest party that sent incorrect T (i)

ℓ

or Tℓ if P ∈ D, as identified in Abort.

If CA ̸= ∅ then S sends (Abort, CA) to F t,n
Prep, independent if Abort of the

protocol was entered or not. Otherwise, it computes ⟨si⟩t as parties would do

PREPROCESSING FOR DISTRIBUTED PROOFS WITH HONEST MAJORITY T < N/2 179

in the protocol and sends the shares of the dishonest parties to F t,n
Prep.

Indistinguishability. We first observe that the shares of the honest parties which
the environment obtains from F t,n

Prep are consistent with those of the dishonest
parties if the simulation finishes successfully. This is because if P is corrupted
then the shares will be consistent with the si, while they are otherwise consistent
with the si unknown to the adversary during the protocol run as the adversary
does not have enough shares to reconstruct (and F t,n

Prep chooses the shares of the
honest parties accordingly). Moreover, S always aborts F t,n

Prep if the adversary
provides inconsistent shares to honest parties or if they provably send visibly
incorrect T (i)

ℓ , Tℓ. We now show through a sequence of hybrids that the output
of S when interacting with the dishonest parties is indistinguishable from the
real protocol running with the dishonest parties.

Define the output of the simulation as H0 and let H1 be exactly like H0, but
where dishonest Vv that send invalid rv,j to an honest P are only added to CA

if the protocol actually enters Abort. By Lemma 6.3, these two hybrids are
indistinguishable except with probability 2−kρ.

Let H2 be the same hybrid as H1, but where dishonest Vv are only added to
CA if they were identified to have sent incorrect sharings in Abort. By Lemma
6.2, these two hybrids are indistinguishable except with probability 2−kρ.

Observe that in the computation of CA, only dishonest parties are contained
and the simulation would abort. Now, let H3 be the same as H2 but where
the simulation does not abort. As abort of the simulation happens iff the
adversary succeeds in forging a signature, any distinguisher of H2 and H3 can
be used to successfully break the unforgeability of Sign. Finally, observe that the
distribution of the shares of the honest parties, the identified corrupted parties
as well as the abort events are identical between H3 and the protocol.

180 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Protocol Πt,n
Prep (cont.)

Distribute Shares:

1. Each party Vi ∈ V executes the following protocol:
(a) For j ∈ [⌈(nS + ρ)/(n− t)⌉] do

i. Sample ri,j ∈ F2k and generate a sharing ⟨ri,j⟩t.
ii. Send (r(p)

i,j ,Sign(ski, r
(p)
i,j)) to Vp for p ̸= i. Note this

is done as a single message for all j values needed.
iii. Send (ri,j ,Sign(ski, ri,j)) to P, again this is done as

a single message for all j values needed.
iv. On receiving (r(i)

p,j , σ
(i)
p,j) = (r(i)

p,j ,Sign(skp, r
(i)
p,j)) from

party Vp, verify the signature. If the signature σ(i)
p,j

does not hold or if Vp did not send any message at
all

A. Broadcast (Complaint, i,Vp).
B. Upon receiving (Complaint, i,Vp) party Vp publicly

sends (r(i)
p,j , σ) to all parties, who forward it to Vi.

v. Similarly, do the same for the signatures that P
should obtain.

2. For ℓ ∈ [ρ] do as follows.
(a) Execute (α1,j,ℓ, . . . , αn,j,ℓ) ←
FRand({V1, . . . ,Vn,P}, n,F2k).

(b) Compute T
(i)
ℓ ←

∑
j

∑
v∈[n] αv,j,ℓ · r(i)

v,j and broadcast
T

(i)
ℓ .

(c) The prover P computes Tℓ ←
∑

j

∑
v∈[n] αv,j,ℓ · rv,j and

broadcasts Tℓ.
(d) If the T (i)

ℓ do not form a valid degree-t sharing of Tℓ then
go to Abort(ℓ).

3. For j ∈ ⌈nS/(n− t)⌉ do
(a) c← (j − 1) · (n− t).
(b) The prover P computes and outputs

(s1+c, . . . , sn−t+c)T = Mt × (r1,j , . . . , rn,j)T ,
(c) Vi ∈ V compute and output (⟨s1+c⟩t, . . . , ⟨sn−t+c⟩t)T =

Mt × (⟨r1,j⟩t, . . . , ⟨rn,j⟩t)T .

Figure 6.6: Protocol for preprocessing with t < n/2 (continued)

DISTRIBUTED PROOF WITH T < N/4 CORRUPTIONS 181

Protocol Π4t

Let C be the circuit to be proved; the prover P is assumed to know an
input witness w such that C(w) = 0.
Let nS denote the number of AND gates in the circuit, nW the length
of the witness w and ρ a positive integer.
Let CheckMult and OutputRec be two additional flags initially set to ⊤
and ⊥ respectively.

Init: Call F t,n
Prep, so that P obtains si and the verifiers V1, . . . ,Vn obtain

⟨si⟩t for i ∈ [nS + nW + 3ρ], i.e. Vj obtains s(j)
i , j ∈ [n]. Set

xj = sj+nW +ns+ρ and yj = sj+nW +ns+2ρ, j ∈ [ρ].

Prove: The prover “evaluates” the circuit as follows:

1. Compute the difference between the input wire values wi and
the pre-processed values si, i.e. wi − si, i ∈ [nW].

2. Evaluate the circuit gate-by-gate:
(a) For every linear gate, simply compute the resulting wire

value
(b) For each AND gate, compute the resulting wire value

cj ← aj · bj and cj − sj+nW
, j ∈ [nS].

(c) Compute ρ additional random triples as xj · yj = zj , and
zj − sj+nW +nS

, j ∈ [ρ]
3. Set the proof to be the concatenation of all the values {wi −
si}i∈[nW], {cj − sj+nW

}j∈[nS], and {zj − sj+nW +nS
}j∈[ρ].

Figure 6.7: Protocol Π4t for t < n/4

6.5 Distributed proof with t < n/4 corruptions

In this section we describe a protocol which deals with t < n/4 corruptions of
the verifiers, i.e. ΓC , ΓS and ΓZ are access structures consisting of all sets with
more than n− t verifiers in them. The protocol Π4t, given in Fig. 6.7, forms
the basis of our following protocol in the case of t < n/3, indeed it shares the
same pre-processing phase from the previous section.

In the setting where we have t < n/4 corruptions we can rely on the Reed-
Solomon decoding to robustly open secret sharings of degree up to 2t. Thus, we

182 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

can efficiently verify multiplications. We assume the statement to be verified is
given by a circuit C over F2k which will evaluate to zero only on input of the
witness w, i.e. C(w) = 0.

Given the values s⃗ generated in pre-processing, the prover can trivially “commit”
to the witness w as well as the outputs of all the multiplication gates of C by
broadcasting the difference between s⃗ and these values towards the verifiers.
The verifiers can then evaluate the circuit as follows: to obtain the wire output
values of a gate, they can either simply apply the corresponding linear operation
directly on their shares, or obtain a sharing for the output wire from the prover’s
broadcast for multiplications. After evaluating the entire circuit in this manner,
the verifiers can robustly open ⟨C(w)⟩t and verify it correctly evaluates to zero.

The verifiers also have to check that the commitments the prover provided for
the outputs of the multiplication gates are consistent. For each verifier Vi, let
a

(i)
j be the share of the left input corresponding to the jth multiplication/AND

gate, j ∈ [nS]. Correspondingly, b(i)
j is the share for the right input and c(i)

j for
the output. Then c(i)

j = a
(i)
j · b

(i)
j is a degree 2 · t sharing of the value cj = aj · bj

output by this multiplication gate. We represent this sharing by ⟨cj⟩2·t. The
proof proceeds by verifying that the values held in ⟨cj⟩2·t are identical with the
values held in ⟨cj⟩t = ⟨sj⟩t − (sj − cj), and provided by the prover, therefore
checking that all committed multiplication gate outputs were correct.

To achieve this, the verifiers check that a random linear combination over
all products of the inputs corresponds to the same linear combination over
the gate outputs. More precisely, for each multiplication gate j ∈ [nS], the
verifiers sample a uniformly random multiplier βj and locally compute shares
A(i) =

∑
j βj · a(i)

j · b
(i)
j , and C(i) =

∑
j βj · c(i)

j . Then, since t < n/4, the
verifiers reliably reconstruct ⟨A⟩2t and ⟨C⟩t. If A = C then the verifiers accept
the proof, otherwise they reject. Cheater identification can be achieved in
a straightforward manner thanks to the error correction during the robust
reconstruction. Moreover, the check is made zero-knowledge by letting P share
additional valid random multiplication triples.

Theorem 6.2

If t < n/4, then protocol Π4t secure implements the functionality
FDV−ZK in the (F t,n

Prep,FRand)-hybrid model with ΓC = ΓS = ΓZ being
the set of all subsets of verifiers of size n − t or more, except with
probability 1/|F|.

In the proof, we use the following lemma.

DISTRIBUTED PROOF WITH T < N/4 CORRUPTIONS 183

Lemma 6.5

Let ⟨xj⟩t, ⟨yj⟩t, ⟨zj⟩2t, ⟨zj⟩t, ⟨a⟩t, ⟨b⟩t, ⟨c⟩2t, ⟨c⟩t the inputs of the
multiplications check. If either xj · yj ̸= zj , for some j ∈ [nS], or
a · b ̸= c, then T ̸= 0, except with probability 1

|F| .

Proof. (of Lemma 6.5) We recall that ⟨zj⟩t = ⟨sj⟩t − (sj − zj), j ∈ [nS], and
⟨c⟩t = ⟨s⟩t − (s − c), where ⟨sj⟩t and ⟨s⟩t are correct sharings provided by
the preprocessing functionality. Let fj,t(·), gj,t(·), sj,t(·) be the unique t-degree
polynomials such that, for j ∈ [nS],

fj,t(i) = x
(i)
j , fj,t(0) = xj ,

gj,t(i) = y
(i)
j , gj,t(0) = yj ,

sj,t(i) = s
(i)
j , sj,t(0) = sj ,

and pt(·), qt(·), st(·) the unique t-degree polynomials such that

pt(i) = a(i), pt(0) = a.

qt(i) = b(i), qt(0) = b,

st(i) = s(i), st(0) = s.

Then the shares A(i) and C(i) are given by∑
j∈[nS]

βj · (fj,t(i) · gj,t(i)) + βnS+1 · (pt(i) · qt(i))

and ∑
j∈[nS]

βj · (sj,t(i)− (sj − zj)) + βnS+1 · (st(i)− (s− c)).

If all the triples are correct, then A− C = T = 0.

Otherwise, suppose that fj,t(0)·gj,t(0) = z̃j and pt(0)·qt(0) = c̃ with z̃j = zj +δj

and c̃ = c+ δnS+1. Then the reconstructed value T is given by

A− C =
∑

j∈[nS]

βj(z̃j − zj) + βnS+1(c̃− c)

=
∑

j∈[nS]

βj · δj + βnS+1 · δnS+1,

184 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

where not all δj ’s are zero. Let b⃗ = (β1, . . . , βnS
, βnS+1) and d⃗ =

(δ1, . . . , δnS
, δnS+1), and consider the linear map fd = d⃗·⃗bT . The probability that

T is zero is equal to the probability that b⃗ ∈ ker(fd). Since dim(ker(fd)) = nS ,
and b⃗ is random and unknown to A when they choose d⃗, the probability that
b⃗ ∈ ker(fd) is |F|nS

|F|nS +1 = 1
|F| .

Proof. (of Theorem 6.2) The simulator S obtains as input from the environment
the set D of corrupted parties and forwards (Corrupt,D) to the functionality. On
input (Init) from FDV−ZK, ifA sends Abort, it forwards Abort to the functionality,
otherwise it forwards (OK). S sets up a copy of FRand.

S emulates F t,n
Prep obtaining si and the s(j)

i , for i ∈ [nS + nW + 3ρ], held by the
corrupted parties. Since VD ∈ ∆Z , it receives (Prove, x) from the functionality.
If P ∈ H, then it randomly samples the shares of the proof for corrupted parties,
and sets honest shares consistently, i.e., such that the multiplication values are
correct and o = 0; otherwise it receives from A the proof, consisting of the
masked input values and masked multiplication values for AND gates and ρ
masked random triples. In this case, S reconstructs the input w̃ and forwards
(Prove, x, w̃) to the functionality. The simulator S starts the simulation of the
verification step, i.e. it evaluates the circuit honestly, for each gate computes
the shares held by corrupted parties and sends the shares of the honest parties
needed to run RobustReconstruct(⟨o⟩t, t). Receiving the shares of corrupted
parties, it checks if those shares are the same as the ones computed by S. We
distinguish two different cases:

• If P ∈ H: The simulator S sets the flag accept. If the shares are consistent
then CA = ∅; else, if the shares are inconsistent, it identifies the cheating
verifiers with incorrect shares and updates CA with those parties.

• If P ̸∈ H: if either (x,w) ̸∈ R or some of the multiplication values given
by the prover are incorrect, it sets the flag reject. If some of the shares
are inconsistent, then S identifies the cheaters and updates CA.

After this, S emulates the Multiplications check. To do this, it obtains random
β1, . . . , βnS+1 from FRand, and sends these values to A. If at any time FRand
sends (Abort, CA), the simulator forwards (Abort, CA) to the functionality.
It also sends to A the honest shares A(i), C(i), i ∈ H, necessary to run
RobustReconstruct, and receives from A the values A(j), C(j), j ∈ D. If some of
these shares are incorrect, it updates CA with the corresponding corruptions.

Finally, if the flag accept or reject is true, S sends (Abort, 1, CA) to FDV−ZK,
otherwise it sends (Abort, 0, CA) to the functionality.

DISTRIBUTED PROOF WITH T < N/4 CORRUPTIONS 185

Indistinguishability. We now argue indistinguishability of the real and ideal
executions to an environment, Z. Recall that Z chooses the inputs of all parties.
The view of Z in the real world then consists of these inputs, the messages
received by the adversary and all the output values.

Indistinguishability of the proof follows from the privacy of Shamir’s secret
sharing scheme and from the fact that the input and the multiplication values are
masked by the preprocessed values si, that are unknown to the adversary if the
prover is honest. The messages received by the adversary in the multiplications
check are randomized by a triple x, y, z, different for each of the ρ executions
and randomly chosen by the simulator, if P is honest, and unknown to Z. From
this and privacy of Shamir’s sharings, simulation of these messages is perfect.

To argue indistinguishability of the output, we distinguish two cases as follows.

• If P ∈ H, the simulator always accepts the proof and outputs (Abort, 1, CA)
to the functionality, where the set CA = ∅ if all the shares provided
by A are correct and consistent. Irrespective of what the adversary
does, RobustReconstruct always reconstructs the correct values, even with
flag = (incorrect, C), since t < n/4. In the ideal execution, the simulator
outputs the set of parties that provided incorrect shares, in the real one
this same set is provided by RobustReconstruct. Indeed, since the sharing
is correct, it is possible to efficiently and correctly detect all the t < n/4
possible errors. Hence, in this case the simulation is perfect.

• If P ̸∈ H, the simulator honestly evaluates the circuit with inputs extracted
from the masked proof given by A. Therefore, if (x, w̃) ̸∈ R and the
multiplication values that are part of the proof are correct, then S rejects
the proof by sending (Abort, 1, CA) and the outputs of the two executions
are identical.
If (x, w̃) ̸∈ R and the multiplication values are incorrect, then the simulator
rejects the proof by sending (Abort, 1, CA), whereas in the real execution
the probability of acceptance is given by Lemma 6.5.
Since this test is repeated ρ times, the probability of passing the
multiplications check with incorrect inputs is (1

|F|)ρ. Finally, we note
that also in this case the set CA of corrupted verifiers given by the
simulation and the protocol are identical and only consists of dishonest
parties: while S can directly check inconsistent shares, in a real execution
this set is guaranteed to be correct by the correctness of the sharing
provided by F t,n

Prep.

186 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Protocol Π4t (cont.)

Verify: The verifiers V1, . . . ,Vn jointly check the circuit evaluation:

1. Evaluate the circuit within the Shamir secret sharing,
computing a share of the output wire ⟨o⟩t:
(a) Shares of the input wires can be computed as ⟨wi⟩t ←
⟨si⟩t + (wi − si) for i ∈ [nW].

(b) Shares of the output wire values for an AND gate can be
computed as

⟨cj⟩t ← ⟨sj+nW
⟩t + (cj − sj+nW

), for j ∈ [nS].

(c) A degree 2·t sharing ⟨cj⟩2·t of this same value is computed
by each Vi as c(i)

j ← a
(i)
j · b

(i)
j .

(d) Linear gates can be evaluated linearly over the shares in
the degree t sharing.

(e) Recompute ⟨xi⟩t = ⟨si+nW +ns+ρ⟩t, ⟨yi⟩t =
⟨si+nW +ns+2ρ⟩t and ⟨zi⟩t ← ⟨si+nW +ns⟩t + (zi −
si+nW +ns

). Furthermore, compute a degree-2t sharing of
zi by locally multiplying the shares of xi, yi as in Step
1c.

2. The verifiers call RobustReconstruct(⟨o⟩t, t), to obtain
(o, flago).

3. If o ̸= 0:
• If flago = (correct, ∅) then output Fail.
• If flago = (incorrect, Co), then output the dishonest

verifiers in Co and Fail.
4. Else, set OutputRec = ⊤. If flago = (incorrect, Co), identify

the dishonest verifiers in Co.
5. Multiplications check: Verifiers repeat ρ times the following.

(a) Call (β1, . . . , βnS+1)← FRand({V1, . . . ,Vn}, nS + 1,F2k).
(b) Compute ⟨A⟩2t =

∑
j∈[nS] βj · ⟨cj⟩2t + βnS+1 ·

⟨zi⟩2t and ⟨C⟩t =
∑

j∈[nS] βj · ⟨cj⟩t + βnS+1 · ⟨zi⟩t
(c) Run RobustReconstruct(⟨A⟩2t − ⟨C⟩t, t), to obtain

(T, flagT)
(d) If T ̸= 0, set CheckMult = ⊥. Moreover,

• If flagT = (correct, ∅), then output Fail.
• If flagTv

= (incorrect, CM), then identify the dishonest
verifiers in flagTv

and output Abort
6. If both CheckMult = ⊤ and OutputRec = ⊤, accept the proof

and identify possible dishonest verifiers CA = Co∪{CMv
}v∈[ρ]

Figure 6.8: Protocol Π4t for t < n/4 (continued)

DISTRIBUTED PROOF WITH T < N/3 CORRUPTIONS 187

Protocol-Π3t (Init)

Let C be the circuit to be proved; the prover P is assumed to know an
input witness w such that C(w) = 0.
Let nS denote the number of AND gates in the circuit, nW the length
of the witness w, and σ = ⌈log2 nS⌉. Let K = F2k and L = F2ρ·k , with
ϕ : K → L the field homomorphism that embeds K in L. The protocol
uses a hash function modelled as a random oracle. For secret sharings
in L, let the evaluation points of verifier Vi be ϕ(i ∈ K).

Init: Call F t,n
Prep in K, so that P obtains si and the verifiers V1, . . . ,Vn

obtain ⟨si⟩t for i ∈ [nS + nW], i.e. Vj obtains s(j)
i , j ∈ [n]. Call

F t,n
Prep in L, so that P obtains Si and the verifiers obtain ⟨Si⟩t for

i ∈ [3 + 2 · σ]. All parties obtain a random string ν ∈ Fλ
2 .

Figure 6.9: Protocol Π3t for t < n/3 (Init)

6.6 Distributed proof with t < n/3 corruptions

The general approach for this setting will be very similar to the case t < n/4
described in the previous section. The main difference is that now we can
no longer robustly reconstruct a degree 2t polynomial, so we will instead rely
on the Schwartz-Zippel lemma to check the correctness of the multiplications.
More precisely, we use a checking method similar to the one used in [BBC+19,
BMRS21]. We first transform the nS multiplication gates into an inner product
triple by taking a random linear combination and updating the left inputs to
the multiplications correspondingly. Given a challenge from the verifiers, this
operation is entirely local.

This inner product triple is then repeatedly compressed by applying the Schwartz-
Zippel lemma, until only a final, single multiplication triple remains. This final
triple can be checked by the verifiers by robustly opening it. The prover adds
an extra random multiplication to preserve the zero-knowledge property in this
process. To avoid lognS rounds of communication between the prover and the
verifiers, we apply the Fiat-Shamir transform to make the process of proving
non-interactive. We also use the Fiat-Shamir transform to compute the initial
re-randomization factors. For this to work we apply a minor change to the
preprocessing functionality F t,n

Prep, so that it additionally outputs a random string
ν ∈ Fλ

2 to all parties P,V1, . . . ,Vn. This is used in the random oracle to bind the
statement and the proof to this value. The compression itself is performed as

188 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

follows. Assume we have an inner product triple ((xi)1≤i≤N , (yi)1≤i≤N , z), such
that z =

∑N
i=1 xi·yi, and thatN is a multiple of two (otherwise, we implicitly pad

the xi and yi by zeroes). The prover then interpolates N polynomials of degree
1, fk(x) and gk(x), such that fk(j) = x2·k+j and gk(j) = y2·k+j = yj , for j ∈ [2].
Furthermore, define the polynomial of degree 2 h(x) =

∑N
2

k=1 fk(x) · gk(x) =
h1 +h2 ·x+h3 ·x2. Observe that by construction, z =

∑2
j=1 h(j) = h2 +h3. The

prover commits to the coefficients of h(x) so that the verifiers can evaluate it
with only linear operations. Given the relation between z and those coefficients
above, the verifiers can recover a commitment to h3 from ⟨z⟩t, and ⟨h2⟩t through
only linear operations, allowing the prover to eliminate a commitment to h3
from the proof. The compressed inner product triple can now be obtained as
((fk(r))1≤k≤N/2, (gk(r))1≤k≤N/2, h(r)) for a randomly chosen value of r.

To verify the proof, the verifiers check that the circuit output reconstructs to 0
and that the final multiplication triple is correct. The interpolation of fk(x)
and gk(x) is linear, so the verifiers can perform the operation locally over the
secret sharing, and with the shares of the coefficients of h(x) the evaluation of
all polynomials in r can also be performed locally.

Figure 6.9 describes the protocol in detail. To ensure the soundness of this
protocol, the multiplication check and compression must be performed over a
large enough finite field. It is however possible to keep the proof size small by
performing the circuit evaluation over a smaller finite field F2k such that 2k > n
to allow for the secret sharing. The (shares of the) inputs and outputs of the
multiplication gates are then lifted to an extension field F2ρ·k to perform the
multiplication check with sufficient soundness.

Theorem 6.3

Let H be a random oracle that maps into F2ρ·k . If t < n/3 then
protocol Π3t described in Fig. 6.9 securely implements the functionality
FDV−ZK against a static adversary in the (F t,n

Prep,FRand)-hybrid model
with ΓC = ΓS = ΓZ being the set of all subsets of verifiers of size n− t
or more, except with probability

ϵ · log2(nS) + q(ϵ+ 2/|D|+ 2−λ)

where q is the number of random oracle queries made by a malicious
prover, ϵ = 2−ρ·k+2 and |D| = 2−ρ·k.

DISTRIBUTED PROOF WITH T < N/3 CORRUPTIONS 189

Lemma 6.6

Let aℓ · bℓ ̸= cℓ, for some ℓ ∈ [nS], then the probability of passing the
multiplication test if parties honestly perform the check is

ϵ · log2(nS) + q(ϵ+ 2/|D|+ 2−λ)

where q is the number of random oracle queries made by a malicious
prover, ϵ = 2−ρ·k+2 is the round-by-round soundness and |D| = 2−ρ·k is
the smallest challenge set in any given round of the proof.

Proof. (of Lemma 6.6) The proof follows from adapting Theorem 5 of [BMRS21].
There, the authors show that if the proof is an IP with LOVe with t rounds, 1
query and round-by-round soundness ϵ, then the compiled protocol that uses
the Fiat-Shamir transform to compute the t challenges instead of having these
chosen by the verifier has soundness error as defined in the statement of the
lemma.

Our protocol is an IP with LOVe by observing that F t,n
Prep generates perfectly

binding linearly homomorphic commitments (due to the reconstruction
property), as used in the IP with LOVe model, and therefore permits the
same queries by the verifier. As we essentially use the same proof protocol
as [BMRS21] for evaluating the circuit, we obtain the same round-by-round
soundness error ϵ and the same number of rounds t. Thus, by their theorem,
we also obtain the same soundness error, except that we avoid their extra loss
due to an adversarial guess of the MAC key of the verifier, as in our case the
commitment is perfectly binding for a dishonest prover.

We now prove theorem 6.3.

The simulator S obtains as input from the environment the set D of corrupted
parties and forwards (Corrupt,D) to the functionality. Throughout the execution,
S simulates the random oracle H by answering every new query with a random
value from the relevant set and maintaining a list of past queries to answer
repeated queries consistently. As in the real protocol, the simulator uses a
deterministic expansion function that for each seed defines a distinct random
tape.

The simulation is very similar to that of Theorem 6.2. On input (Init) from
FDV−ZK, if A sends Abort, it forwards Abort to the functionality, otherwise
forwards (OK). S emulates F t,n

Prep obtaining the values si and s
(j)
i , for i ∈

[nS +nW +2 ·n1 +n2 +2], held by corrupted parties. Since VD ∈ ∆Z , it receives
(Prove, x) from the functionality. If P ∈ H, then it randomly samples values

190 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

to be sent during Prove. In the process, it samples random Rj by honestly
emulating the random oracle H. If P is corrupted it receives from A the proof
by extracting from the shares issued by F t,n

Prep. S reconstructs the input w̃ and
forwards (Prove, x, w̃) to the functionality.

The simulator S starts the simulation of the verification step, i.e. it evaluates the
circuit honestly, for each gate computes the shares held by corrupted parties and
sends the shares of the honest parties needed to run RobustReconstruct(⟨o⟩t, t).
Here, if P ∈ H it sends shares during RobustReconstruct of ⟨o⟩t that open it to
0. Receiving the shares of corrupted parties, it checks if those shares are the
same as the ones computed by S. We distinguish two different cases:

• If P ∈ H: The simulator S sets the flag accept. If the shares are consistent
then CA = ∅; else, if the shares are inconsistent, it identifies the cheating
verifiers with incorrect shares and updates CA with those parties.

• If P ̸∈ H: if either (x,w) ̸∈ R or some of the multiplication values given
by the prover are incorrect, it sets the flag reject. If some of the shares
are inconsistent, then S identifies cheaters and updates CA.

It also sends to A the honest shares, necessary to run RobustReconstruct and
receives from A the shares of dishonest verifiers. If some of these shares are
incorrect, it updates CA with the corresponding corruptions.

Finally, if the flag accept or reject is true, S sends (Abort, 1, CA) to FDV−ZK,
otherwise it sends (Abort, 0, CA) to the functionality.

Indistinguishability. We now argue indistinguishability of the real and ideal
executions to an environment, Z. Recall that Z chooses the inputs of all parties.
The view of Z in the real world then consists of these inputs, the messages
received by the adversary and all the output values.

Indistinguishability of the proof follows from the privacy of Shamir’s secret
sharing scheme and from the fact that the input and the multiplication values
are masked by the preprocessed values si, that are unknown to the adversary
if the prover is honest. All messages received by the adversary for the shares
of h are also committed to using differences to random commitments by the
simulator, if P is honest, and unknown to Z. Moreover, the triple in the last
round is random due to the inclusion of a random triple in the protocol. For
the opening of o, the adversary does not have enough shares to distinguish
its opening to 0 from the opening to the actual value that was shared by the
simulator. From this and privacy of Shamir’s sharings throughout the protocol,
simulation of these messages is perfect.

DISTRIBUTED PROOF WITH T < N/3 CORRUPTIONS 191

To argue indistinguishability of the output, we distinguish two cases as follows.

• If P ∈ H, the simulator always accepts the proof and outputs (Abort, 1, CA)
to the functionality, where the set CA = ∅ if all the shares provided
by A are correct and consistent. Irrespective of what the adversary
does, RobustReconstruct always reconstructs the correct values, even with
flag = (incorrect, CA), since t < n/3 and the sharings are correct since
they are obtained by calling the preprocessing functionality. In the ideal
execution, the simulator outputs the set of parties that provided incorrect
shares, in the real one this same set is provided by RobustReconstruct.
Indeed, since the sharing is correct, it is possible to efficiently and correctly
detect all the t < n/3 possible errors. Hence, in this case the simulation
is perfect.

• If P ̸∈ H, the simulator honestly evaluates the circuit with inputs extracted
from the masked proof given by A. Therefore, if (x, w̃) ̸∈ R and the
multiplication values that are part of the proof are correct, then S aborts
the proof towards FDV−ZK and the outputs of the two executions are
identical.
If (x, w̃) ̸∈ R and the multiplication values are incorrect, then the
simulator rejects the proof, whereas in the real execution the probability
of acceptance is given by applying Lemma 6.6.
Finally, we conclude by observing that the set CA of cheating verifiers
is identical in both the executions and only consists of corrupted parties
as this set in the protocol is given by running the Reed-Solomon
reconstruction on a correct sharing with t < n/3.

192 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Protocol-Π3t (Prove)

The prover “evaluates” the circuit as follows:

1. Compute the difference between the input wire values wi and the
pre-processed values si, i.e. wi − si, i ∈ [nW].

2. Evaluate the circuit gate-by-gate:

(a) For every linear gate, simply compute the resulting wire value
(b) For each AND gate, compute cj ← aj · bj and cj − sj+nW

, j ∈
[nS]. Let Aj = ϕ(aj), Bj = ϕ(bj) and Cj = ϕ(cj).

3. Compute an additional random multiplication triple (A,B,C) ∈
L3, and compute A− S1, B − S2, C − S3.

4. Set π to be the concatenation of all committed values so far:
{wi − si}i∈[nW], {cj − sj+nW

}j∈[nS], A− S1, B − S2, C − S3.

5. Randomize the multiplication triples (Aj , Bj , Cj = Aj ·Bj)j into
an inner product triple ((Rj ·Aj)j , (Bj)j ,

∑
j Rj ·Cj), where nS +1

random value Rj are sampled, seeded with a hash of (π, x, ν).

6. Compress the inner product triple σ times until a single
multiplication triple remains. For j ∈ [σ]:

(a) Parse the current inner product triple as ((Xk)k, (Yk)k, Z), k ∈
[nS/2j]

(b) Interpolate the polynomials fk(x) and gk(x) such that fk(0) =
X2·k−1, fk(1) = X2·k, gk(0) = Y2·k−1 and gk(1) = Y2·k.

(c) Define h(x) =
∑

k fk(x) · gk(x) = h1 + h2 · x+ h3 · x2.
(d) Append commitments to the coefficients h1, h2 of the

polynomial h(x) to π: {hi −X3+2·j+i}i∈[2].
(e) Obtain a random field element Tj ∈ L, seeded with a hash of

the current value of π.
(f) The inner product triple now becomes

((fk(Tj))k, (gk(Tj))k, h(Tj)).

The proof consists of the final value of π.

Figure 6.10: Protocol Π3t for t < n/3 (Prove)

DISTRIBUTED PROOF WITH T < N/3 CORRUPTIONS 193

Protocol-Π3t (Verify)

The verifiers V1, . . . ,Vn jointly check the circuit evaluation:

1. Evaluate the circuit within the Shamir secret sharing on K,
computing a share of the output wire ⟨o⟩t:

(a) Shares of the input wires can be computed as ⟨wi⟩t ← ⟨si⟩t +
(wi − si) for i ∈ [nW].

(b) Shares of the output wire values for an AND gate cj = aj · bj

can be computed as

⟨cj⟩t ← ⟨sj+nW
⟩t + (cj − sj+nW

), for j ∈ [nS].

Let ⟨Aj⟩t = ϕ(⟨aj⟩t), ⟨Bj⟩t = ϕ(⟨bj⟩t) and ⟨Cj⟩t = ϕ(⟨cj⟩t).
(c) Linear gates can be evaluated linearly over the shares in the

degree t sharing.

2. The verifiers obtain A, B and C by similarly adding the
commitment to the preprocessing shares.

3. The verifiers call (o, flago)← RobustReconstruct(⟨o⟩t).

(a) If o ̸= 0:
• If flago = (correct, ∅) then output Fail.
• If flago = (incorrect, Co), then output the dishonest

verifiers in Co and Fail.
(b) If flago = (incorrect, Co), identify the dishonest verifiers in Co.

4. Obtain the same – secret-shared – randomization to an inner
product triple as the prover, using the same random value R.

5. Perform the analog of the prover’s compressions, for j ∈ [σ]:

(a) Interpolate ⟨fk(x)⟩t and ⟨gk(x)⟩t similar to the prover.
(b) The polynomial ⟨h(x)⟩t can be recovered from the

commitment to its coefficients, together with ⟨h2⟩t = ⟨Z⟩t −
⟨h2⟩t.

(c) Update the inner product triple to be the compressed version
with the same random Tj as the prover.

6. Let the final remaining multiplication triple be (⟨X⟩t, ⟨Y ⟩t, ⟨Z⟩t).

7. Call (w, flagw)← RobustReconstruct(⟨w⟩t, t) for w ∈ {X,Y, Z}. If
flagw = (incorrect, Cw), identify the cheaters in Cw.

8. If X · Y ̸= Z, Fail. Otherwise, accept the proof.

Figure 6.11: Protocol Π3t for t < n/3 (Verify)

194 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

Number of Proof Preprocessing Prover Verifier
Protocol Circuit n t Field Parameters preproc. element size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 5 1 F23 ρ = 14 7000 2496 1.67 4.07 6.83
Π4t SHA-256 5 1 F23 ρ = 14 23000 8449 3.45 7.06 14.02
Π4t SHA x10 5 1 F23 ρ = 14 230000 84655 28.52 33.64 43.87
Π4t 1M AND 5 1 F23 ρ = 14 1100000 375048 95.64 30.03 89.81
Π3t AES 4 1 F23 F287 6655 + 50 2811 2.01 7.81 8.43
Π3t SHA-256 4 1 F23 F287 22530 + 35 8808 3.41 22.83 24.24
Π3t SHA x10 4 1 F23 F287 225745 + 50 85079 24.46 50.32 50.94
Π3t 1M AND 4 1 F23 F287 1000128 + 50 375516 98.89 180.07 200.27
Π3t AES 7 2 F23 F287 6655 + 50 2811 2.98 7.86 8.93
Π3t SHA-256 7 2 F23 F287 22530 + 35 8808 4.52 21.88 24.16
Π3t SHA x10 7 2 F23 F287 225745 + 50 85079 25.16 54.23 80.28
Π3t 1M AND 7 2 F23 F287 1000128 + 50 375516 113.79 187.56 212.69

Table 6.2: Experimental results for running the protocols in Figure 6.7 and
Figure 6.9 on our evaluation circuits

Figure 6.12: Timing on the 10-block SHA256 circuit with t = ⌊(n− 1)/4⌋ and
t = ⌊(n− 1)/3⌋ respectively. The base field is F27 and for t < n/3 the extension
field is F291 .

6.7 Experiments

We implemented our protocols in C++6 and tested with different circuits and
number of verifiers.

For experiments with less than 10 parties, our tests were run on a cluster of
computers running Ubuntu 20.04.2 with a ping time of roughly 0.6 ms, and
a total bandwidth of 9.41Gbit/s per machine. The machines had either Intel
i7-770K CPUs running at 4.2 GHz with 32 GB of RAM, or Intel i9-9900 CPUs
running at 3.1 GHz with 128 GB of RAM. For the other experiments (n > 10),

6The implementation is publicly available at https://github.com/KULeuven-COSIC/Feta.

https://github.com/KULeuven-COSIC/Feta

EXPERIMENTS 195

Proof Preprocessing Prover Verifier
Protocol Circuit n t Field Parameters size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 100 20 F27 ρ = 6 5, 824 33.26 2.36 10.60
Π4t SHA-256 100 20 F27 ρ = 6 19, 714 42.09 5.47 13.39
Π4t SHA x10 100 20 F27 ρ = 6 197, 527 166.35 46.63 51.28
Π4t 1M AND 100 20 F27 ρ = 6 875, 112 432.21 175.92 218.51
Π3t AES 100 30 F27 F291 6, 153 71.55 5.56 68.06
Π3t SHA-256 100 30 F27 F291 20, 090 70.20 15.34 80.52
Π3t SHA x10 100 30 F27 F291 197, 971 181.13 135.09 215.65
Π3t 1M AND 100 30 F27 F291 875, 602 595.44 562.45 891.46

Table 6.3: Experimental results for n = 100 verifiers on our evaluation circuits

we utilized n+ 1 machines on Amazon AWS. Each of these was an individual
c5.large instance in the eu-central-1 region, with a measured ping of roughly
0.5 ms, and 4.17Gbit/s bandwidth. Each configuration was run a total of 200
times and the median was taken to obtain the presented running times.

We present experimental validation of the efficiency of our protocols for small
circuits by presenting prover and verification times for proving knowledge of an
AES-128 key corresponding to a public plaintext-ciphertext pair and a boolean
circuit proving the knowledge of a pre-image for the SHA-256 compression
function. These functions where chosen as the boolean circuits for these are
readily available, and well-studied. The AES-128 circuit has 6400 AND gates,
while the SHA-256 circuit has 22573 AND gates. We also present results for
a SHA-256 pre-image consisting of 10 512-bit blocks, which gives a circuit of
1,317,424 total gates and 220,369 AND gates, and a circuit consisting solely
of one million AND gates, with 128 inputs. For all circuits and protocols we
present results for a system tolerating a single corrupted verifier (t = 1) and
a total of n = 5 verifiers in Table 6.2. For the protocol for t < n/3, we also
provide numbers for t = 2 corruptions with n = 7 parties in total.

In Figure 6.12, we present results for n ∈ {20, 40, 60, 80, 100} with the maximum
value for t allowed by the protocols. Table 6.3 contains more detailed results of
our experiments with n = 100 verifiers.

6.7.1 Results

Our experimental results are presented in Table 6.2 and Figure 6.12. We
can immediately see that Π4t is a small factor more efficient than Π3t. Both
protocols have runtimes that allow for practical deployment. Given that a
threshold of t < n/4 may be enough in a number of practical situations, one
can see that the more efficient Π4t can be preferred.

We have already made some comparisons with other systems in Section

196 FETA: EFFICIENT THRESHOLD DESIGNATED-VERIFIER ZERO-KNOWLEDGE PROOFS

6.1. Notice that [DDOS19, BDK+21, DOT21] report comparable prover and
verification times for AES, however these papers use a more compact description
of the AES circuit over F28 with S-boxes instead of AND gates. We could utilize
the same approach, obtaining better runtimes. However, our goal is different
from the one in these papers as they specifically aim to obtain efficient post-
quantum signature schemes based on AES, while we support general circuits,
only using AES and SHA-256 as examples.

For protocol Π4t from Figure 6.7, targeting t < n/4, we selected the finite field
F23 to accommodate the secret sharing, when n < 7 and F27 for the other
cases. We performed ρ = 14 (resp. ρ = 6) parallel repetitions of the protocol to
boost the statistical security to 2−42. When looking at the trade-off between
the field size of F2k and the number of repetitions ρ for this protocol, notice
that the security level will always be 2−k·ρ, regardless of how we distribute the
load across the two parameters. Similarly, the communication cost among the
verifiers does not depend on either ρ or k individually, but only on the product
ρ · k. Using a larger field size, however, does increase the proof size and the
communication cost of the preprocessing phase, as those only depend on the
field size, and not on ρ. Hence, it should be preferred to use a smaller field
with more parallel repetitions, rather than increasing the field size to target a
security level for this protocol. The communication cost (in terms of amount of
bytes sent by each verifier) in the verification protocol is O(n) in the case of
protocol Π4t.

For Π3t in Figure 6.9, targeting t < n/3, we again choose to aim for a security
level of sec = 40 and let the maximum number of queries the prover can make
to H be q = 240. Similar to the above case, we choose F2k = F23 as the minimal
field to accommodate for the secret sharing for n ≤ 7 and F27 for the other
cases; we let F2ρ·k = F287 be the extension field, when n ≤ 7, and F2ρ·k = F291

for the other cases, to ensure soundness for all our evaluation circuits.

Large number of verifiers. Table 6.3 and Figure 6.12 show that increasing
the number of parties has a small impact on proof and verification time for
protocol Π4t, while the change is a little more evident in Π3t. There is only a
small difference in the pre-processing execution between our two protocols. Our
Π4t protocol can prove circuits of 1 million AND gates in less than 176/220ms
for proof and verification, respectively, with 100 verifiers; while our Π3t requires
proof/verification time of 563/892ms for the same circuit and number of verifiers.
In both protocols the proof size is ≈ 0.8MB.

Communication cost. The communication cost is O(n) in the case of protocol
Π3t; which scales linearly with the number of verifiers, however, importantly it

BIBLIOGRAPHY 197

is sublinear in the total circuit size. Note, the threshold t has no effect on the
round or total communication cost, it only increases the computational cost to
perform a robust opening. Also note, for small n, the computation time mostly
dominates for the prover, and we see only little impact of a growing number
of verifiers on the prover time. When the number of verifiers grows larger, the
communication starts to dominate. For the verifiers, similarly the increased
amount of communication partners takes its toll, along with an increased
computational cost for robust reconstruction when t starts to grow.

For our preprocessing protocol for any t < n/2, the dominant cost is each verifier
sending nS/(n − t) shares to every other verifier, and the prover. Therefore,
if t is a constant fraction of n, the communication per verifier is linear in the
circuit size but essentially independent of n. For instance, with t = n/3 it is
roughly 3

2 · nS field elements, and for t = n/4 this becomes 4
3 · nS .

Acknowledgements

We thank Pratik Sarkar for identifying a bug in an earlier version. This work
has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT,
by the Defense Advanced Research Projects Agency (DARPA) under contract
HR001120C0085, by the FWO under an Odysseus project GOH9718N, by
CyberSecurity Research Flanders with reference number VR20192203, by the
Aarhus University Research Foundation, and by the Independent Research Fund
Denmark under project number 0165-00107B.

Bibliography

[ACF02] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-
interactive distributed-verifier proofs and proving relations among
commitments. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 206–223. Springer, Berlin, Heidelberg,
December 2002.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

198 BIBLIOGRAPHY

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable
relation sharing and multi-verifier zero-knowledge in two rounds:
Trading NIZKs with honest majority. Cryptology ePrint Archive,
Report 2022/167, 2022.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Cham, August 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable zero knowledge with no trusted setup. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Cham,
August 2019.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Berlin, Heidelberg, August 2013.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive
proofs (extended abstract). In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 81–95. Springer,
Berlin, Heidelberg, April 1991.

[BDK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet:
Short and fast signatures from AES. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer,
Cham, May 2021.

[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge
proof systems tolerating a faulty minority. Journal of Cryptology,
4(2):75–122, January 1991.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson.
Multi-prover interactive proofs: How to remove intractability
assumptions. In 20th ACM STOC, pages 113–131. ACM Press,
May 1988.

[BKZZ20] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and
Bingsheng Zhang. Crowd verifiable zero-knowledge and end-to-end

BIBLIOGRAPHY 199

verifiable multiparty computation. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,
pages 717–748. Springer, Cham, December 2020.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter
Scholl. Mac’n’cheese: Zero-knowledge proofs for boolean and
arithmetic circuits with nested disjunctions. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 92–122, Virtual Event, August 2021. Springer, Cham.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure
MPC with linear communication complexity. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 213–230. Springer,
Berlin, Heidelberg, March 2008.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[DDOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela
Orsini, and Nigel P. Smart. BBQ: Using AES in picnic signatures.
In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019,
volume 11959 of LNCS, pages 669–692. Springer, Cham, August
2019.

[DOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-based
arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 3022–3036. ACM Press, November 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987.

[HBHW16] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox.
Zcash protocol specification. GitHub: San Francisco, CA, USA,
2016.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization of
adversaries tolerable in secure multi-party computation (extended
abstract). In James E. Burns and Hagit Attiya, editors, 16th ACM
PODC, pages 25–34. ACM, August 1997.

200 BIBLIOGRAPHY

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM
Press, November 2013.

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. Arbitrum: Scalable, private
smart contracts. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 1353–1370. USENIX Association,
August 2018.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KZF+18] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-
Sanchez, and Arthur Gervais. Commit-Chains: Secure, scalable
off-chain payments. Cryptology ePrint Archive, Report 2018/642,
2018.

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge.
In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
245–263. Springer, Berlin, Heidelberg, February 2005.

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby.
Linear-time and post-quantum zero-knowledge SNARKs for R1CS.
Cryptology ePrint Archive, Report 2021/030, 2021.

[Sha79] Adi Shamir. How to share a secret. Communications of the
Association for Computing Machinery, 22(11):612–613, November
1979.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 2021
IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE
Computer Society Press, May 2021.

BIBLIOGRAPHY 201

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa,
and Ion Stoica. DIZK: A distributed zero knowledge proof system.
In William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018, pages 675–692. USENIX Association, August 2018.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang.
QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press,
November 2021.

[YW22] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs
to multiple verifiers. Cryptology ePrint Archive, Report 2022/063,
2022.

CHAPTER 7

ZK-for-Z2K: MPC-in-the-Head
Zero-Knowledge Proofs for Z2k

Lennart Braun1 , Cyprien Delpech de Saint Guilhem2 , Robin Jadoul2 ,
Emmanuela Orsini3 , Nigel P. Smart2,4 , and Titouan Tanguy4

1Department of Computer Science, Aarhus University, Aarhus, Denmark,
2COSIC, KU Leuven, Leuven, Belgium,

3Department of Computing Sciences, Bocconi University, Milan, Italy,
4Zama. Inc, Paris, France.

[BdSGJ+24] Lennart Braun, Cyprien Delpech de Saint Guilhem, Robin Jadoul,
Emmanuela Orsini, Nigel P. Smart, and Titouan Tanguy. ZK-
for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k . In
Elizabeth A. Quaglia, editor, Cryptography and Coding, pages
137–157, Cham, 2024. Springer Nature Switzerland.

203

https://orcid.org/0000-0001-9164-305X
https://orcid.org/0000-0002-0147-2566
https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7965-620X

204 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

Abstract: In this work, we extend the MPC-in-the-Head framework, used in
recent efficient zero-knowledge protocols, to work over the ring Z2k , which is
the primary operating domain for modern CPUs. The proposed schemes are
compatible with any threshold linear secret sharing scheme and draw inspiration
from MPC protocols adapted for ring operations. Additionally, we explore
various batching methodologies, leveraging Shamir’s secret sharing schemes and
Galois ring extensions, and show the applicability of our approach in RAM
program verification. Finally, we analyse different options for instantiating the
resulting ZK scheme over rings and compare their communication costs.

My contributions: Main author
I was a main collaborator on the design and proofs for the multiplication checks
and ring checks. I also contributed the concept of packing in the Galois domain.

7.1 Introduction . 206

7.1.1 Our Contribution . 208

7.2 Preliminaries . 210

7.2.1 Notation . 210

7.2.2 Rings . 210

7.2.3 Secret-Sharing Schemes over Rings 212

7.2.4 MPC-in-the-Head via Linear Secret Sharing 214

7.3 Checking Multiplications over Rings 217

7.3.1 Sacrifice Based Check . 217

7.3.2 Inner Product Multiplication Check 219

7.3.3 Compressed Multiplication Check 221

7.4 Checking Base Ring Sharings . 226

7.5 Protocol Communication Costs . 227

7.5.1 Primitive Costs . 228

7.5.2 Protocol Costs . 229

7.5.3 Overall Costs . 230

7.5.4 Concrete Comparison of the Three ΠMult-Check Subprotocols 230

7.6 Packing . 235

ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K 205

7.6.1 Packing in the Shamir Domain 235

7.6.2 Packing in the Galois Domain 235

7.6.3 Multi-Round Computations 237

7.7 RAM Application . 238

7.7.1 Permutation Check . 238

7.7.2 Bound Check . 239

7.7.3 Array Access Check . 240

206 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

7.1 Introduction

Zero-knowledge (ZK) proofs [GMR85] are a fundamental tool for numerous
privacy-preserving applications. A proof system enables a prover to convince
a verifier that a statement is true beyond reasonable doubt. The zero-
knowledge property additionally ensures that the only information learnt from
the interaction by the verifier (or any other listener) is the veracity of the
statement, and nothing else.

A common method of expressing statements for proof systems is circuit
satisfiability. In this approach, both the prover and verifier possess a circuit C,
and the prover aims to demonstrate their knowledge of a witness w which
satisfies the condition C(w) = 0. Usually, C is a circuit defined over a field,
either binary or arithmetic. However, many use cases of ZK proof systems (such
as program verification) require the statement to be expressed with arithmetic
over a ring, such as Z2k . In particular, the underlying structure of choice for
modern CPUs, 64-bit integers, can be expressed over the ring Z264 . Hence,
proof systems natively compatible with this ring arithmetic allow to preserve
the semantics of a conventional CPU, without the costly need to emulate it
with finite field arithmetic instead.

There are few exceptions to this approach and some ZK protocols have been
extended to operate over rings. In particular, when considering highly efficient
and scalable zero-knowledge protocols, some works [BBMH+21, BBMHS22,
LXY23] have extended protocols based on vector oblivious linear evaluation
(VOLE) to work over Z2k . These kinds of proofs are able to handle very large
statements, such as proving properties of complex computer programs, but are
only designated-verifier, i.e., the verifier needs to keep some state secret from
the prover. This means that these proofs cannot be made non-interactive and
require both parties to be online at the same time.

Publicly verifiable proofs can be generated in different ways, for example
following the MPC-in-the-Head (MPCitH) paradigm introduced by Ishai,
Kushilevitz, Ostrovsky and Sahai in [IKOS07]. Despite its simplicity, this
technique has proven efficiency and flexibility, and found a variety of different
applications. In the context of zero-knowledge, MPCitH leads to very
efficient protocols [AHIV17, BN20, GMO16, FR22, FMRV22, KZ22, KKW18]
for proving statements that can be expressed with small to medium-size
circuits, and it can be used to develop efficient post-quantum digital signature
schemes [BDK+21, CDG+17].

MPC-in-the-Head. The core idea behind MPCitH is for the prover P to emulate
an MPC protocol for the circuit C, amongst N parties, in their head, and

INTRODUCTION 207

commit to each of the emulated parties’ view. The verifier V then asks to
decommit a small enough subset of these views so as not to break the privacy of
the MPC scheme. The soundness of the proof comes from the correctness of the
underlying secure MPC protocol and the decommitment of parties’ views. In
this way, if the prover wants to cheat in the MPC protocol, they need to simulate
some parties as acting maliciously, which in turn can be detected if the set of
malicious parties overlaps the set of decommited parties. In addition, since the
verifier sees fewer views than the privacy threshold of the MPC protocol, the
zero-knowledge property holds.

The seminal work of Ishai et al. [IKOS07] describes a generic compiler
which makes black-box use of the underlying MPC protocol, but only
considers asymptotic complexity; on the other hand, recent concretely efficient
protocols [GMO16, FR22, FMRV22, KKW18, AHIV17] provide different
concrete instantiations for the MPC protocol used to evaluate the circuit
C, based both on full-threshold [BN20, KZ22, KKW18, DOT21] and variable
t-threshold secret-sharing schemes [GMO16, FR22, FMRV22, AHIV17]. In the
latter case, the resulting ZK scheme can achieve better soundness and different
choices of t result in different proof-size/efficiency/soundness trade-offs.

Another significant difference amongst these efficient MPCitH based schemes
lies in the way the MPC protocol is used, i.e., whether its task consists of
computing the circuit C or just verifying it. In the former approach, taken for
example by [BN20, KKW18, IKOS07], the prover locally emulates the MPC
protocol by secret-sharing the witness w amongst the N simulated parties as
the input of the MPC evaluation; then it evaluates in MPC the circuit C and
sends to the verifier commitments to each parties’ input shares, random tapes
and received messages (these values constitute a party’s view) and to all output
shares. Then, the verifier randomly chooses t of the views’ commitments to be
opened, and verifies that the committed messages are all consistent with each
other and with the output shares.

In the latter approach, used for example by [AHIV17, BDK+21, DOT21], instead
of computing the entire circuit C in MPC, the prover, that knows the witness
and all the intermediate values of the circuit evaluation, inputs (or injects) all
these values (the witness and results of non-linear operations) in a secret-shared
form as input of the MPC protocol, whose role at this point is simply checking
that these inputs are indeed correct. This approach usually leads to better
performance for the prover. The input of this MPC protocol is also called
extended witness, since the role of the MPC protocol is not only that of verifying
that w is a valid witness, i.e., that C(w) = 0, but also that the non-linear
operations in C have been honestly computed.

208 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

7.1.1 Our Contribution

This work describes how to adapt some efficient MPCitH protocols, like [BN20,
DOT21, FR22], to work over a ring of the form Z2k . As said before, compared
to VOLE-based schemes, MPCitH proofs have the advantage to be public coin,
which enables public verifiability and the ability to obtain non-interactive proofs
via the Fiat–Shamir transformation [FS87].1 We summarize our contributions
as follows.

MPCitH over Z2k . Our approach considers MPCitH schemes such as
Limbo [DOT21] and [FR22] where the MPC protocol is used to verify the
correctness of the committed extended inputs. This type of protocols can be
well suited to particular use cases, such as verifying computations or proving the
correct execution of RAM programs (where an extension of existing protocols
to work over Z2k can be practically relevant).

In recent years, MPC protocols have also been extended to work over rings; see
for example [CDE+18, EXY22] for the case of dishonest majority (i.e. t ≥ N/2),
and [ACD+19, JSv22] for the case of honest majority (i.e. t < N/2). In the case
of honest majority protocols, the natural secret-sharing scheme to instantiate a
threshold MPC protocol, Shamir’s secret sharing [Sha79], requires the underlying
algebraic structure to be suitably large. In the case of MPC over finite fields
one simply extends the base field so that it contains N + 1 elements (where N
is the number of parties). In the case of rings it requires a large enough Galois
ring extension, so that the largest exceptional sequence2 in the extension ring
contains N + 1 elements. This was originally introduced in the context of secret
sharing by Fehr [Feh98].
A similar approach is also needed in our protocols, where we replace the full-
threshold additive sharing scheme used in Limbo with a t-threshold secret sharing
scheme to achieve better soundness. We show different options to instantiate
our MPC verification procedures, and analyse their respective communication
costs. While the t-threshold approach generally comes with a larger proof size
than the additive sharing, it trades this for higher efficiency for the verifier, who
now only needs to verify that t parties behaved honestly rather than N − 1.

Finally, we recall that KKW [KKW18] already works over any rings. This
scheme is known for its efficiency when dealing with small to medium-sized
circuits, however, as mentioned earlier, it requires an MPC evaluation of the

1Many VOLE proofs can be split into an interactive, witness-independent preprocessing
phase and a public-coin online phase, of which the latter can be made non-interactive. Note
that this still requires the designated verifier to keep secret state.

2Informally, an exceptional sequence of elements in a ring R is such that their pairwise
difference is invertible. (See Section 7.2.2.)

INTRODUCTION 209

entire circuit C, which may not be the most suitable approach for applications
like program verification.

Packing techniques. Section 7.6, we describe a methodology for packing within
our MPCitH proofs, that is, proving multiple statements for the same circuit in
parallel, in a single proof. It consists of two orthogonal approaches that could
potentially be combined to achieve better packing rates. We take advantage
of Shamir’s threshold secret sharing scheme by embedding multiple secrets in
the roots of the sharing polynomial, and we also make use of the additional
coefficients provided by Galois ring extensions by placing multiple secrets within
a single ring element.

Performing batch proofs in this way additionally alleviates the extra
communication cost for a threshold scheme, since the extra space that was
introduced to have a large enough exceptional set becomes completely utilized.
In combination with the increased verifier efficiency and the better soundness
guarantees, this makes the threshold setting preferable to the additive setting
for batch proofs.

RAM applications. In Section 7.7, we adapt the compilation procedure
of [DOTV22] to the ring structure. The techniques used there allow to compile
a list of read and write array accesses to a standard arithmetic circuit for proof
systems in order to enable program verification. This compilation naturally fits
the MPCitH framework extended to the ring Z2k that we describe in this chapter.
This approach removes the need of any bit-decomposition operation; this is
different from other recent works [GHAH+23] that use MPCitH schemes based
on the KKW protocol [KKW18] for program verification and ring switching
techniques based on edaBits [EGK+20].

In our work, to verify the correctness of the memory operations, the initial array
is extended to a checking circuit Ccheck over Z2k —with standard linear and
multiplication gates and calls to a random oracle—that verifies the consistency
of a list of access tuples which contains both the initial array and the accesses
performed, encoded as a set of tuples. Given this list, Ccheck produces new
multiplication triples that need to be verified via a checking procedure over rings.
To perform these consistency checks, [DOTV22] describes three subcircuits
EqCheck, BdCheck and PermCheck to verify respectively equality, upper and
lower bounds and permutation of a list of values in zero-knowledge.

While our compilation follows the blueprint of [DOTV22], the main difference is
that, to suit the ring structure, we require a large enough exceptional sequence
and the removal of the EqCheck sub-circuit that crucially relies on every element
having an inverse. Our resulting construction inherits all the properties of the

210 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

scheme described in [DOTV22], leading to a public-coin constant-overhead ZK
proof system for computations over Z2k in the RAM model.

7.2 Preliminaries

This section establishes notation and recalls standard results.

7.2.1 Notation

We denote by λ the computational security parameter and by σ the statistical
security parameter. For a set S, we let a← S denote the uniform sampling a
from S. If D is a probability distribution over S, we let a← D denote sampling
a from S according to D. For a probabilistic algorithm A, we let a ← A
denote the probabilistic assigning to a of the output of algorithm A, with the
distribution being determined by the random coins of A. We let [n] ⊂ N denote
the set {1, . . . , n}. We use x for vectors of elements, and x ◦ y for element-wise
products.

Zero-knowledge proofs. We use standard definitions of zero-knowledge proofs;
we construct our protocols to allow proving arbitrary NP language-membership
statements. Let L be in NP and R(x,w) be a corresponding NP relation with
statement x and witness w. That is, the statement x is a member of L if
and only if a witness w exists such that (x,w) ∈ R. We can then consider an
arithmetic circuit C (with addition and multiplication gates) that decides (or
rather confirms) membership of L when given such a witness. Concretely, the
circuit satisfies C(x,w) = 0 if and only if (x,w) ∈ R. The focus of this work
are zero-knowledge proofs of knowledge for relations where C is an arithmetic
circuit over the ring Z2k .

7.2.2 Rings

While the circuits we use in our proof systems are defined over the ring Z2k , we
need to work over larger rings to enable threshold secret sharing and to achieve
low soundness errors. In this work we consider two ways to obtain such larger
rings as described below.

2-adic extensions. Instead of using Z2k , we increase the modulus and work
over Z2k+s , where s depends on the security parameter. This methodology

PRELIMINARIES 211

of extending the ring 2-adically in order to check various relations was first
introduced in the SPDZ2k protocol [CDE+18]. While this is a well-studied
technique in the MPC literature, there are some limitations inherent to our
application to MPCitH. Many soundness checks that use such an extension
only guarantee consistency for the k lower bits; this may therefore require
iterating such extensions to Z2k+n·s . Moreover, since Z2k is not a subring
of Z2k+s , we cannot easily lift Z2k elements to Z2k+s if we also wish to
retain some auxiliary algebraic relationship between the lifted values. The
converse direction—truncating elements of Z2k+s to Z2k —is a well-defined
ring homomorphism.

Galois extensions. We extend the base ring Z2k by forming the Galois ring
GR(2k, d) = Z2k [X]/(p(X)), the ring of polynomials with Z2k coefficients
reduced modulo an irreducible polynomial p(X) of degree d. One
advantage of this technique is that reduction modulo 2 results in the
field F2d , i.e., we have GR(2k, d)/(2) ≃ F2d . Also, while taking a degree-d
extension increases the size of elements by a multiplicative factor d, it
can be used for several different checks—unlike the 2-adic extensions.
Moreover, a Z2k element can be easily “lifted” into a GR(2k, d) element
by using zero for the coefficients of non-constant terms. This lift often
retains algebraic relationships between the lifted elements.

Note that both techniques can also be combined to obtain rings of the form
GR(2k+s, d).

Definition 7.1: (Maximal) Exceptional Sequence

Let GR(2k, d) be a degree-d Galois extension of Z2k . A set {α1, . . . , αn}
is an exceptional sequence (of length n) in GR(2k, d) if for all i ̸= j ∈ [n]
we have αi − αj ∈ GR(2k, d)∗.
An exceptional sequence of length n is maximal if there does not exist
an exceptional sequence of length n′ > n.

In GR(2k, d), there exists a maximal exceptional sequence of length 2d,
see [ACD+19, Prop. 2]. We use Ex(R) to denote a maximal exceptional sequence
of a Galois ring R and assume that we can efficiently sample uniformly random
elements from it. For Ex(R) we can take the 2d polynomials with {0, 1}
coefficients as an exceptional sequence.

To perform soundness checks in our proof systems, we will often reduce these to
equality checks between two polynomials. While the Schwartz–Zippel Lemma

212 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

is frequently used for this purpose when the polynomials are defined over finite
fields, we require a generalized variant that is adapted to our ring-based setting.

Lemma 7.1: Generalized Schwartz–Zippel Lemma [CCKP19]

Let R be a ring, and f : Rn → R an n-variate non-zero polynomial of
total degree (the sum of degrees of each variable) D over R. Let A ⊆ R
be a finite exceptional sequence with |A| ≥ D. Then, Prx∈RAn [f(x) =
0] ≤ D

|A| .

For soundness checks over 2-adic extensions, we also introduce the following
lemma to bound the soundness error over Z2k when performing computations
over Z2k+s .

Lemma 7.2: 2-adic Random Linear Combinations

Let δ1, . . . , δn be elements of GR(2k+s, d), such that at least one
δi ̸≡ 0 (mod 2k). Also let α1 = 1 and α2, . . . , αn ← GR(2s+1, d) be
chosen uniformly at random. Then we have the probability bound
Pr
[∑

αi · δi ≡ 0 (mod 2k+s)
]
≤ 2−(s+1)·d.

Proof. Let δj (for j ̸= 1)3 be a value that is nonzero modulo 2k and w < k be
the maximal integer such that 2w | δj . Then

∑
αi · δi ≡ 0 (mod 2k+s) only

when
αj ≡

−
∑

i ̸=j αi · δi

2w
·
(
δj

2w

)−1
(mod 2k+s−w),

where the inverse used is guaranteed to exist due to the maximality of w. Since
αj is uniformly random from GR(2s+1, d) and k + s − w ≥ s + 1, our claim
holds.

7.2.3 Secret-Sharing Schemes over Rings

We consider additive (A) as well as threshold (T) secret sharing schemes over our
commutative finite rings R, e.g. R = GR(2k, d), which we denote as J·KA and J·KT

respectively. Our protocols work with any linear secret sharing scheme. Only
the overall soundness and the communication cost depend on the instantiation.
Hence, we will often drop the A or T from the notation and just write J·K. Both
schemes allow the parties to compute linear functions on shared values such
as JγK = a · JαK + b · JβK + c by performing only local computations on their

3if only δ1 ̸≡ 0, the equality holds with probability 0.

PRELIMINARIES 213

individual shares.

Additive Secret-Sharing. An additive (N − 1)-out-of-N secret sharing
over R is straightforward. To share a value v ∈ R, first sample values
v1, . . . , vN ← R and then set ∆v = v−

∑
i∈[N] vi. The share of party Pi is then

defined as JvKA
i := (vi; ∆v). We denote this procedure as JvKA ← ShareA(v).

Reconstruction is performed by computing v = ∆v +
∑

i∈[N] vi, which we denote
as v ← RecA(JvKA).

Threshold Secret-Sharing. The well-known threshold secret sharing scheme
due to Shamir [Sha79] relies on polynomial interpolation which usually requires
a field structure. We follow the work of Abspoel et al. [ACD+19], who have
shown how to use Galois rings to realize Shamir-style threshold secret sharing
over rings in the context of MPC.

Let α0, . . . , αN be an exceptional sequence of length N+1 within GR(2k, d). To
share a value v ∈ Z2k among parties P1, . . . , PN with threshold t, first sample
a random degree-t polynomial f from GR(2k, d)[X]≤t with the condition that
f(α0) = v. To then create shares, give each party Pi, for i ∈ [N], the value
JvKT

i := yi := f(αi). We denote such a sharing with JvKT ← ShareT (v).

To reconstruct a value v, we use Lagrange interpolation using any index set
S ⊆ [1, N] of at least t+ 1 shares:

f(X) =
∑
i∈S

yi ·
∏

j∈S\{i}

X − αj

αi − αj

This interpolation over GR(2k, d) is well-defined since, by definition of an
exceptional sequence, all differences αi−αj are invertible. Let the reconstruction
procedure be denoted by v ← RecT ({JvKT

i }i∈S).

Note that, in general, one needs to check whether a shared value lies in the
base ring Z2k or (strictly) in the ring extension GR(2k, d) \ Z2k . To deal with
this, we describe a checking procedure ΠRing-Check, which ensures a set of shares
corresponds to values in Z2k without violating t-privacy, in Section 7.4. This
procedure can then be applied to the input shares. In our protocols, no other
wires or shares, such as the rest of the extended witness, need be validated
in this way, as either these shares are obtained through linear operations that
preserve this property, or the property is guaranteed by the correctness of our
subprotocol to check multiplications.

214 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

7.2.4 MPC-in-the-Head via Linear Secret Sharing

This section presents a general framework for MPCitH protocols based on
threshold linear secret sharing schemes, built on the framework of Feneuil et
al. [FR22] that provides a generic transformation for MPC protocols based on
threshold linear secret sharing. We first describe a generic MPC protocol for
circuit verification, then show how it can be used to obtain a ZK proof system,
and finally analyse the resulting soundness.

MPC Protocol for MPCitH. The MPC protocol presented in Figure 7.1 is
generic for threshold LSSS over Z2k , in the sense that it can be instantiated
with any multiplication checking protocol and any suitable LSSS. It involves
an input party who distributes secret shared values to the computing parties.
Looking ahead, we refer to the totality of these input values as the extended
witness of the resulting proof system. In addition, computing parties have access
to two oracles: a hint oracle OH which provides the parties with a sharing of
an arbitrary secret value from the input party; and a randomness oracle OR

which outputs random public values.

These oracles are mainly used in the following subprotocols whose goal is to
verify some properties on shares of (extended) witness values:

ΠZero-Check takes as input a value JvK (resp. a vector of values JvK) and returns
⊤ when v = 0 (resp. every entry of v is zero), or ⊥ otherwise. This can
be achieved similarly to share reconstruction, with the difference that the
opened value is not sent.

ΠMult-Check takes a triple (JaK, JbK, JcK) and returns ⊤ if and only if a ◦ b = c.
In some cases, this equality can be checked over a different ring than that
in which the input values are shared. We provide three instantiations of
ΠMult-Check in Section 7.3, and these form the main contribution of this
chapter.

ΠRing-Check takes as input a vector of values JvK, shared over a 2-adic extension
GR(2k+src , d0) and outputs ⊤ if and only if the truncation of v to
GR(2k, d0) lies in the subring Z2k . It also truncates the elements of
v to the ring GR(2k+s, d0). (See Section 7.4.)

We write Πτ
Mult-Check to denote the parallel repetition of τ instances. By verifying

a property through one of these subprotocols, we mean that the subprotocol is
run, and reject is returned by the MPC protocol when the output differs from ⊤.
Reconstructing a shared value is performed by each party Pj first broadcasting
its share JvKj and then running v ← Rec(JvK) In the threshold setting, only t+ 1
shares are required since the other shares are determined by these.

PRELIMINARIES 215

Generic MPC Protocol ΠC for Circuit Verification

Parameters: A circuit C over Z2k consisting of linear and multiplication
gates with #inputs inputs and m multiplications Mul; a LSSS sharing
scheme J.K defined over GR(2k+s, d0) for parameters s and d0. The
inputs wi are defined over GR(2k+src , d0), for parameter src ≥ s which
matches the parameter for ΠRing-Check.

Inputs: The input party calls Share on its input wi, i ∈ [#inputs] and wγ

for each gate (α, β, γ,Mul)i for i ∈ [m], and send Jw∗Kj to the computing
party Pj .

Protocol: Each Pj initializes an empty checklist M

1. Verify the inputs are in Z2k : ΠRing-Check(w1, . . . , w#inputs)
2. For each gate (α, β, γ, T) ∈ C, in topological order:

(a) Case T = Lin: JvγK := a · JvαK + b · JvβK + c done locally by
each party.

(b) Case T = Mul:
• Party Pj retrieves JwγKj received from the input party and

sets JvγKj = JwγKj .
• Each Pj adds a tuple to (their share of) the multiplication

checklist Mj ←Mj ∪ {(JvαKj , JvβKj , JvγKj)}
3. Verify circuit output: ΠZero-Check(JvoK).
4. Verify multiplications: parties parse M column-wise as

(JxK, JyK, JzK) and run Πτin
Mult-Check(JxK, JyK, JzK).

Figure 7.1: Generic MPC protocol for circuit verification

In essence, this protocol does not compute the circuit C, but only checks that
the values given by the input party are consistent with an honest evaluation
of C. To do so, the computation parties parse C in topological order but only
(locally) compute the linear gates, whereas output of non-linear gates and Rec
are provided as input and hence need to be checked. This is necessary because
the input party is not trusted to provide the correct values. The output of
the protocol is either accept or reject. To decrease the false-positive rate of the
multiplication checking procedure, the parties execute it τin times in parallel.

From MPC to ZK. The compilation technique of Ishai et al. [IKOS07],

216 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

applied to this MPC protocol, provides our interactive zero-knowledge scheme
between a prover P and a verifier V.

The prover executes, in their head, the MPC protocol ΠC(x,w) between N
parties using an LSSS with t-privacy. To do so, P first evaluates C(x,w) in the
clear, and secret shares w as well as the intermediate values required for a local
computation of C. After recording these N input views, it plays the role of the
input party and distributes these shares to virtual computing parties. These
parties execute ΠC(x,w) and its checking sub-protocols. When the protocol
queries OH , the requested shared values are provided by P to the virtual parties
and recorded in the input views. Queries to OR are replaced by an interaction
with the verifier, where first P commits to the input views so far, and then V
responds with a random value.

In the final interaction, after ΠC terminates, V asks to open t of the N views,
which it checks for consistency. If the consistency check succeeds, and the
output of ΠC(x,w) is accept, then V also outputs accept.

ZK Protocol Soundness. The MPC protocol may output accept for an
invalid witness with some bounded false-positive rate p, i.e., the probability that
ΠC(x,w) outputs accept when in fact C(x,w) ̸= 0. When p is not sufficiently
small, we increase the detection probability by performing τin parallel inner
repetitions of the circuit check inside the MPC protocol. This leads to an overall
false-positive rate of errMPC = pτin .

The framework of Feneuil et al. [FR22] provides a generic transformation for
any such MPC protocol with N parties and tolerating up to t corruptions into
an MPCitH proof, with a soundness error of

errZK = 1(
N
t

) + errMPC ·
t · (N − t)
t+ 1 . (7.1)

For an additive full-threshold secret sharing scheme (t = N − 1), this becomes

errZK = 1
N

+ errMPC ·
(

1− 1
N

)
.

By setting N and t, we obtain a certain errZK for the soundness error of a single
execution of the protocol. Since this may be too high for a given security setting,
we can repeat the transformed protocol τout times (outer repetitions) to obtain
any desired soundness error, errτout

ZK .

We denote the overall proof size by sizeProof , which one can think of as the
communication cost in bits, required to commit to the parties’ views and open
t of them in τout repetitions.

CHECKING MULTIPLICATIONS OVER RINGS 217

7.3 Checking Multiplications over Rings

We now describe three instantiations for CheckMult. The three protocols have
appeared previously in the context of MPCitH over fields, but their extension
to MPC over rings is mostly new, although a protocol similar to our sacrificing
check can be found in [BBMH+21] for VOLE-based zero-knowledge proofs over
Z2k .

We analyse their soundness in the ring-based setting, and compare their
performance. For each of the checking procedures, we analyse the false-positive
rate errMPC of the resulting MPC protocol. It then suffices to use the generic
transformation of Feneuil and Rivain [FR22] to compile our MPC protocol into
an MPCitH proof system with soundness error as in eq. (7.1).

Our three different checking procedures are: 1) A simple sacrifice-based check,
ΠSac-Check (described in Section 7.3.1), 2) an inner product multiplication check,
ΠIP-Check (in Section 7.3.2), and 3) a compressed multiplication check, ΠCompress
(in Section 7.3.3). For the first two of these, one can improve the soundness by
utilizing either 2-adic or Galois extensions. The third, compressed multiplication
check, is adapted from the methodology in [BBC+19, DOT21], and requires a
Galois ring extension.

Looking ahead, in the next section we also present a fourth procedure which
checks that a set of shares (typically the input to the circuit) all correspond
to values in Z2k (as in line 1 of Figure 7.1). This procedure takes its inputs as
shares in GR(2k+src , d0), has a soundness error of errRing-Check. When the chosen
multiplication checking procedure would have sufficient soundness with smaller
s < src, it is possible to locally truncate the input shares correspondingly before
performing the procedure.

The false-positive rate of the MPC protocol becomes errMPC := errτin
Check +

errRing-Check where errCheck denotes the false-positive rate of a single execution
of the checking procedure. In Section 7.5, we investigate the differences in
communication cost for our different multiplication checks and sharing scheme
choices.

7.3.1 Sacrifice Based Check

Our first multiplication checking procedure is a sacrificing based check. This
is based on the checking protocol of Baum and Nof [BN20], combined with
an optimization of Kales and Zaverucha [KZ22, Sec. 2.5, Optimization 3],
transferred to the ring setting. The algorithm is presented in Figure 7.2.

218 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

ΠSac-Check: Sacrificing Check

Parameters: Additional Galois extension size d1.

Inputs: (JxK, JyK, JzK) shared over GR(2k+s, d0).

Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k+s, d0 · d1).
2. (JaK, JcK)← OH uniformly random with a◦y = c over GR(2k+s, d0 ·
d1)

3. ε← OR such that ε ∈ GR(21+s, d0 · d1)
4. α← Rec(ε · JxK− JaK)
5. Output ΠZero-Check(ε · JzK− JcK−α ◦ JyK)

Figure 7.2: The sacrificing check over rings.

As inputs, it receives the vectors (JxK, JyK, JzK) of multiplication input and
output values, secret-shared over the “computation ring” GR(2k+s, d0). In case
of d1 > 1, it first lifts these vectors to the “checking ring” GR(2k+s, d0 · d1).
Then, the hint oracle OH distributes to the parties secret shares of JaK and JcK,
correlated in such a way that a ◦ y = c. After receiving a random coefficient ε
from the randomness oracle OR, the parties “sacrifice” the vector JaK by using
it to mask the randomized vector ε · JxK and reconstruct the masked value as α.
Finally, the protocol checks whether both z and c were computed correctly by
OH by checking that the sacrificing equation ε · JzK− JcK−α ◦ JyK is equal to
0. The argument is that if either z or c is incorrect, then the probability that
the equality holds, taken over the choice of ε ∈ GR(21+s, d0 · d1), is very small.

We first take a brief look at the correctness of the protocol. If the input is valid,
then the protocol always outputs accept, since

ε · z− c−α ◦ y = ε · x ◦ y− a ◦ y− (ε · x− a) ◦ y

= ε · x ◦ y− a ◦ y− ε · x ◦ y + a ◦ y = 0.

The zero-knowledge property remains preserved by virtue of α being uniformly
random as a result of the mask a being uniformly random.

Soundness follows from the following theorem.

CHECKING MULTIPLICATIONS OVER RINGS 219

Theorem 7.1: Soundness of ΠSac-Check

For invalid input, i.e., ∃i ∈ [m] . xi · yi ̸= zi, the check passes with
probability at most errSac-Check := 2−(s+1)·d0·d1 .

Proof. Write x ◦ y = z + δz and a ◦ y = c + δc. The protocol outputs accept if
and only if for all i ∈ [m], we have

0 = ε · zi − ci − αi · yi

= ε · (xi · yi + δz,i)− (ai · yi + δc,i)− (ε · xi − ai) · yi

= ε · xi · yi + ε · δz,i − ai · yi − δc,i − ε · xi · yi + ai · yi

= ε · δz,i − δc,i.

Recall that ε ∈R GR(2s+1, d0 ·d1), δz,j ∈ GR(2k+s, d0), and δc,j ∈ GR(2k+s, d0 ·
d1). Assume that δz,j ̸= 0 (mod 2k) for some j ∈ [m]. By Lemma 7.2, we
can bound the probability that a malicious prover chooses δz,j , δc,j such that
0 = ε · δz,j + δc,j holds over GR(2k+s, d0 · d1).

7.3.2 Inner Product Multiplication Check

Our second checking procedure, which is based on inner product checks,
is described as a precursor to the Limbo protocol [DOT21], together with
optimizations from Kales and Zaverucha [KZ22], adapted to the ring setting.
We present the algorithm in Figure 7.3.

This second checking procedure ΠIP-Check works very similarly to the sacrificing
check ΠSac-Check of Figure 7.2, the main difference is that the hint oracle OH

produces a single correlated inner product tuple ((a, c) such that ⟨a,y⟩ = c)
rather than m correlated multiplication tuples ((a, c) such that a ◦ y = c).
This change then requires the random oracle OR to produce m random values
(contained in the vector η), instead of a single one, and it also changes the
checking equation so that it checks a single equality, rather than m. This time,
the security rationale is that if either z or c is incorrect, then the single checking
equation will not equal 0 except with small probability (over the choice of η).
The rationale for the zero-knowledge property is again due to the random mask
JaK.

220 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

ΠIP-Check: Inner Product Check

Parameters: Additional Galois extension size d1.

Inputs: (JxK, JyK, JzK) shared over GR(2k+s, d0).

Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k+s, d0 · d1).
2. (JaK, JcK) ← OH uniformly random with ⟨a,y⟩ = c over
GR(2k+s, d0 · d1).

3. η ← OR such that η ∈ GR(21+s, d0 · d1)m.
4. α← Rec(η ◦ JxK− JaK)
5. Output ΠZero-Check(⟨η, JzK⟩ − JcK− ⟨α, JyK⟩)

Figure 7.3: The inner product check over rings.

Here as well, the protocol is correct, since if the input is valid, then the protocol
always outputs accept as

⟨η, z⟩ − c− ⟨α,y⟩ = ⟨η,x ◦ y⟩ − ⟨a,y⟩ − ⟨η ◦ x− a,y⟩

= ⟨η,x ◦ y⟩ − ⟨a,y⟩ − ⟨η ◦ x,y⟩+ ⟨a,y⟩ = 0.

Soundness follows from the following theorem.

Theorem 7.2: Soundness of ΠIP-Check

For invalid input, i.e., ∃i ∈ [m] . xi · yi ̸= zi (mod 2k), the check passes
with probability at most errIP-Check := 2−(s+1)·d0·d1 .

Proof. Write x ◦ y = z + δz and ⟨a,y⟩ = c + δc. If the input is invalid, then
there is an index j ∈ [m] such that δz,j ̸= 0 (mod 2k). The protocol accepts if
and only if

0 = ⟨η, z⟩ − c− ⟨α,y⟩ = ⟨η, z⟩ − c− ⟨η ◦ x,y⟩+ ⟨a,y⟩

=
∑

i∈[m]

ηi · (zi − xi · yi)− c+ ⟨a,y⟩ =
∑

i∈[m]

ηi · (−δz,i) + δc

With this equality, we can conclude by Lemma 7.2.

CHECKING MULTIPLICATIONS OVER RINGS 221

ΠCompress Subroutine for Inner Product Compression

Parameters: compression factor ν, dimension ℓ, flag rand ∈ {⊤,⊥}

Inputs: ν shared dimension-ℓ inner product tuples (JxiK, JyiK, JziK)i∈[ν]
shared over GR(2k, d)

Outputs: one shared dimension-ℓ inner product tuple (JxK, JyK, JzK)
shared over GR(2k, d)

Protocol:
Let {α1, . . . , α2ν+1} ⊂ Ex(GR(2k, d)).

1. If rand = ⊥ define two shared dimension-ℓ vectors of degree-(ν − 1)
polynomials JfK, JgK:

f(αi) =
(
x1 · · · xν

)T

g(αi) =
(
y1 · · · yν

)T

where i ∈ [ν]. Note, the parties can compute the shared coefficients
JfjK, JgjK locally from the JxiK, JyiK by Lagrange interpolation.
If rand = ⊤, obtain random shares JvK, JwK← OH and define f ,g
instead of degree ν with the additional points f(αν+1) = v and
g(αν+1) = w.

2. Inject JziK← OH for i ∈ [ν+1, 2ν−1] such that zi := ⟨f(αi),g(αi)⟩.
If rand = ⊤, similarly inject JziK for i ∈ {2ν, 2ν + 1}.

3. If rand = ⊥ define shared polynomial JhK of degree 2(ν − 1) by
h(αi) = zi for i ∈ [ν, 2ν − 1]. Again, the parties can compute
the shared coefficients JhjK locally from the JziK by Lagrange
interpolation.
If rand = ⊤, instead define h of degree 2ν with the additional points
h(αi) = zi for i ∈ {2ν, 2ν + 1}.

4. Obtain challenge ε← OR such that ε ∈ Ex(GR(2k, d)) \ {αi}i∈[ν].
5. Output (JxK, JyK, JzK) := (Jf(ε)K, Jg(ε)K, Jh(ε)K).

Figure 7.4: The subroutine for inner product compression

7.3.3 Compressed Multiplication Check

Our third and final check is adapted from Limbo [DOT21]. In contrast to the
previous checks, we do not use 2-adic extensions here, since we would have to

222 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

extend the modulus repeatedly at least logν(m) times. To apply the compressed
protocol with compression factor ν, the check must happen over an algebraic
structure where an exceptional sequence of length at least 2ν + 1 exists.

We first give the subprotocol of [DOT21] to compress a sequence of ν inner
product tuples into a single inner product tuple in Figure 7.4; then we present
the main protocol in Figure 7.5. Correctness and zero-knowledge for this
checking protocol follow the same arguments as the original version over fields.
Soundness follows from the following theorem.

Theorem 7.3: Soundness of ΠComp-Check

Let d := d0 · d1. For invalid input, i.e., ∃i ∈ [m] . xi · yi ̸= zi (mod 2k),
the check passes with probability at most

errComp-Check :=2−d + (1− 2−d) ·
((

2(ν − 1)
2d − ν

)
·

logν (m)−2∑
j=0

(
1− 2(ν − 1)

2d − ν

)j

+
(

2ν
2d − ν

)
·
(

1− 2(ν − 1)
2d − ν

)logν (m)−1
)

≤2−d + 2ν
2d − ν

· logν(m).

Proof. We follow the corresponding proof by [DOT21] and define a sequence of
events given that the input is invalid:

• Let A be the event that the protocol outputs accept.

• Let A1 be the event that the tuple
(
Jx0K, Jy0K, Jz0K

)
obtained through the

ConstructIP subprotocol is correct.

• Let Aj
2 for j ∈ [logν(m)] be the event that the tuple

(
JxjK, JyjK, JzjK

)
obtained through the Compress subprotocol is correct, and write A0

2 = A1.

We relate the probabilities as follows:

Pr[A] = Pr[A1] + Pr[¬A1] · Pr[A | ¬A1]

Pr[A | ¬Aj
2] = Pr[Aj+1

2] + Pr[¬Aj+1
2] · Pr[A | ¬Aj+1

2] for j ∈ [1, logν(m)− 1]

Pr[A | ¬Alogν (m)
2] = 0

CHECKING MULTIPLICATIONS OVER RINGS 223

ΠComp-Check: Compressed Multiplication Check

Parameters: number of multiplications m, compression factor ν (assume
logν(m) ∈ N), Galois extension degree d1

Inputs: (JxK, JyK, JzK) of length m shared over GR(2k, d0).

Protocol:

1. Lift (JxK, JyK, JzK) to GR(2k, d0 · d1).
2. Create inner product tuple

(
Jx0K, Jy0K, Jz0K

)
:

(a) η ← OR such that η ∈ GR(2, d0 · d1)m.
(b) Set Jx0K := η ◦ JxK, Jy0K := JyK, and Jz0K := ⟨η, JzK⟩.

3. For each round j ∈ [logν(m)]:
(a) Parse

(
Jxj−1K, Jyj−1K, Jzj−1K

)
(of length m/νj−1) as

Jxj−1K =
(
Jaj

1K, . . . , Jaj
νK
)

Jyj−1K =
(
Jbj

1K, . . . , Jbj
νK
)

where the aj
i ,b

j
i are of length m/νj .

(b) For i ∈ [ν − 1], obtain Jcj
i K← OH such that cj

i =
〈

aj
i ,b

j
i

〉
.

(c) Set Jcj
νK = Jzj−1K−

∑
i∈[ν−1]Jc

j
i K

(d) If j < logν(m), run(
JxjK, JyjK, JzjK

)
← ΠCompress((Jaj

i K, Jb
j
i K, Jc

j
i K)i∈[ν]),

else if j = logν(m), run(
JxjK, JyjK, JzjK

)
← ΠRand

Compress((Ja
j
i K, Jb

j
i K, Jc

j
i K)i∈[ν]).

Both yield inner product tuples of length m/νj .
4. Open xlogν (m) ← Rec(Jxlogν (m)K).
5. Output ΠZero-Check(xlogν (m) · Jylogν (m)K− Jzlogν (m)K).

Figure 7.5: The compressed multiplication check

We get from Lemmas 7.4 and 7.3.3 (see below), that

Pr[A1] L. 7.4= 2−d

Pr[Aj
2] L. 7.3.3= 2(ν − 1)

2d − ν
for j ∈ [1, logν(m)− 1]

Pr[Alogν (m)
2] L. 7.3.3= 2ν

2d − ν

224 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

Combining them (and using A1 = A0
2) yields

Pr[A] = Pr[A0
2] + Pr[¬A0

2] · Pr[A | ¬A0
2]

= Pr[A0
2] + Pr[¬A0

2] · (Pr[A1
2] + Pr[¬A1

2] · Pr[A | ¬A1
2])

= Pr[A0
2] + Pr[¬A0

2] · Pr[A1
2] + Pr[¬A0

2] · Pr[¬A1
2] · Pr[A | ¬A1

2]

= Pr[A0
2] + Pr[¬A0

2] · Pr[A1
2]

+ Pr[¬A0
2] · Pr[¬A1

2] · (Pr[A2
2] + Pr[¬A2

2] · Pr[A | ¬A2
2])

= · · ·

=
logν (m)∑

j=0
Pr[Aj

2] ·
j−1∏
i=0

Pr[¬Ai
2] + Pr[A | ¬Alogν (m)

2] ·
logν (m)∏

j=0
Pr[¬Aj

2]

=
logν (m)∑

j=0
Pr[Aj

2] ·
j−1∏
i=0

Pr[¬Ai
2]

= Pr[A0
2] + Pr[¬A0

2] ·
(logν (m)−1∑

j=1
Pr[Aj

2] ·
j−1∏
i=1

Pr[¬Ai
2]

+ Pr[Alogν (m)
2] ·

logν (m)−1∏
i=1

Pr[¬Ai
2]
)

= 2−d + (1− 2−d) ·
((

2(ν − 1)
2d − ν

)
·

logν (m)−2∑
j=0

(
1− 2(ν − 1)

2d − ν

)j

+
(

2ν
2d − ν

)
·
(

1− 2(ν − 1)
2d − ν

)logν (m)−1
)

≤ 2−d + 2ν
2d − ν

· logν(m),

which concludes this proof.

CHECKING MULTIPLICATIONS OVER RINGS 225

Lemma 7.3: Soundness of ΠCompress

If one of the inner product tuples

(JxiK, JyiK, JziK)i∈[ν]

is incorrect, or any of the values zi, i ∈ [ν+1, 2ν−1], is defined incorrectly,
then the output inner tuple (JxK, JyK, JzK) is also incorrect, except with
probability at most 2(ν−1)

2d−ν
if Rand = ⊥ and 2ν

2d−ν
if Rand = ⊤.

Proof. For now assume that Rand = ⊥. Suppose there is an error at index
j ∈ [2ν − 1]. Then we have zj ̸= ⟨f(αj),g(αj)⟩, where zj is either part of the
input (j ∈ [ν]) or an injected value (j ∈ [ν + 1, 2ν − 1]). In both cases, we have
h(αj) ̸= ⟨f(αj),g(αj)⟩, and therefore h ̸= ⟨f ,g⟩.

We now apply the generalized Schwartz-Zippel Lemma (Lemma 7.1). Note that
the challenge ε is sampled from the exceptional sequence Ex(GR(2k, d))\{αi}i∈[ν]
of size 2d − ν. Hence, we obtain that ⟨x,y⟩ ≠ z iff ⟨f ,g⟩ (ε) ̸= h(ε) with
probability at most 2(ν−1)

2d−ν
.

In the case Rand = ⊤, we analogously obtain an error probability of at most
2ν

2d−ν
.

Lemma 7.4

For invalid input (JxK, JyK, JzK) into ΠComp-Check, i.e., such that x◦y ̸= z,
we have

〈
x0,y0〉 ̸= z0 except with probability 2−d0·d1 .

Proof. Write x ◦ y = z + δz Let j ∈ [m] such that xj · yj ̸= zj and, hence,
δz,j ̸= 0. Then 〈

x0,y0〉 = z0

⇐⇒
∑

i∈[m]

ηi · xi · yi =
∑

i∈[m]

ηi · zi

Hence we can apply Lemma 7.2

226 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

7.4 Checking Base Ring Sharings

To ensure the prover knows and inputs a witness over the base ring Z2k , we
devise a check for the parties to ensure this in Figure 7.6. We can perform
a batched check that all the values we wish to inspect are simultaneously
correct by taking a random linear combination with coefficients from Z21+src ,
and opening that. Since this would leak a linear combination of secret values,
we also allow the prover to input an additional sharing of a value in Z2k+src to
mask this relation (before receiving the random coefficients from the verifier).
This is conceptually similar to the recent approach by Shoup and Smart in
[SS23].

ΠRing-Check

Inputs: JxK = (Jx1K, . . . , JxℓK) shared over GR(2k+src , d0)

Protocol:

1. Obtain Jx0K, corresponding to a value in the ring Z2k+src from OH .
2. Receive ℓ random coefficients r1, . . . , rℓ ∈ Z21+src from OR.
3. Compute and open JvK = Jx0K + r1Jx1K + . . .+ rℓJxℓK.
4. If v ∈ Z2k+src , return ⊤, otherwise return ⊥.

Figure 7.6: The check to ensure sharings correspond to values in the base ring.

In [ACD+19], Abspoel et al. consider a similar problem for the case of non-
MPCitH MPC protocols. They solve this problem by generating random secret
shared masks hiding values in the correct ring by means of hyperinvertible
matrices, after which these masks can be adjusted with a public value to hide the
wanted secret. In an MPCitH context however, this becomes both less convenient,
since all computing parties need to contribute their own randomness, as well as
requiring a higher communication cost in the final proof size. Soundness follows
from the following theorem.

Theorem 7.4: Soundness of ΠRing-Check

For invalid input, that is if any of x0, x1, . . . , xℓ are a value in GR(2k, d0)\
Z2k when reduced modulo 2k, the check passes with probability at most
errRing-Check := 2−(src+1).

PROTOCOL COMMUNICATION COSTS 227

Table 7.1: Rings and numbers of primitive operations used by the three
multiplication checking protocols.

Multiplication Check
ΠSac-Check ΠIP-Check ΠComp-Check

small ring Rsmall GR(2k+s, d0) GR(2k+s, d0) GR(2k, d0)
big ring Rlarge GR(2k+s, d0 · d1) GR(2k+s, d0 · d1) GR(2k, d0 · d1)
challenge space C GR(21+s, d0 · d1) GR(21+s, d0 · d1) GR(2, d0 · d1)
rounds µ 1 1 logν(m) + 1
input over Rsmall #inputs +m #inputs +m #inputs +m
hint over Rlarge m 1 (2ν − 1) · logν(m) + 2
uniform hint over Rlarge m m 2
reconstruction over Rlarge m m 1
challenge from C 1 m m+ logν(m)

Proof. This is simply Lemma 7.2, applied to only a single coefficient of the
Galois extension. Hence, we get a bound of 2−(src+1)·1.

When dealing with additive sharings, the parties can instead simply check their
own local shares to lie in the correct ring and return ⊥ when this is not the
case. For semi-honest parties, this is guaranteed to have no false positives.

7.5 Protocol Communication Costs

The communication costs of the zero-knowledge proofs depends greatly on the
used secret sharing scheme and the multiplication check protocol, as well as a
large set of parameters. To simplify notation, we use Rsmall for the ring used to
share the witness, Rlarge for the ring extension in which the checks are performed.
Moreover, the random challenges from OR live in the challenge space C, and µ
denotes the number of rounds of the MPC protocol, i.e., the number of calls
to OR. For brevity of notation, we use B (S) = ⌈log2 |S|⌉ to denote the number
of bits needed to represent an element from S.

Table 7.1 shows how many primitive operations we need for each checking
protocol, and Table 7.2 gives the communication cost of each operation in both
sharing types. The costs of the challenges are B (C) · µ · τin, since they can be
shared across the ‘outer repetitions’.

228 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

Table 7.2: Communication costs in bits of the primitive operations. Here B(·)
denotes the number of bits required to encode an element of the set passed as
argument.

Sharing Scheme
Additive Threshold

input over Rsmall B (Rsmall) B (Rsmall) · t
hint over Rlarge B (Rlarge) B (Rlarge) · t
uniform hint over Rlarge 0 B (Rlarge) · t
reconstruction over Rlarge B (Rlarge) B (Rlarge)
challenge from C B (C) B (C)

7.5.1 Primitive Costs

The communication costs for our basic operations can be summarized as follows.

Commitments: Before each call to OR the prover commits to the current state
of the computation. The τout · µ ·N total commitments can be combined into
τout · µ Merkle trees, and for each round it is sufficient to send a hash of the
τout Merkle roots. Thus, committing costs 2λ · µ bits. Before the verifier selects
a subset of parties whose views to open, the prover sends another hash with
shares of the last reconstructed values.

To open t of the commitments in each repetition, we have to send, in addition
to the committed data, λ bits of randomness per commitment as well the
corresponding Merkle paths. Each path is of length log2(N), but since we open
t views and the path overlap, we pay 2λ · log2(N/t) bits per path.

Overall, this results in

sizeCommit := 2λ · (µ+ 1) + τout · λ · µ · t · (2 log2(N/t) + 1)

bits of communication for committing and opening.

Opening sharings: Since to open a sharing only the reconstructed value needs
to be revealed on top of the t already decommited shares, the cost for opening
a Z2k value is k bits (for a GR(2k, d) value this is k · d bits), regardless of the
secret sharing scheme being used.

PROTOCOL COMMUNICATION COSTS 229

Providing hints: The OH oracle can be instantiated in two different ways,
depending on the kind of secret sharing being used. For a threshold secret sharing
scheme, both specific and uniformly random values v ∈ Z2k (or v ∈ GR(2k, d))
can be obtained by running JvK← Share(v) and distributing the shares to the
corresponding parties. This costs t · k (or t · k · d) bits of proof size.

For additive secret sharing, uniformly random values in Z2k or GR(2k, d) can
be obtained at zero extra cost by having all parties individually derive their
shares from a PRG seed. A uniformly random sharing JrKA can be transformed
into a sharing of a specific value JvKA by updating the public adjustment ∆v,
at the cost of only k or k · d bits of proof size.

7.5.2 Protocol Costs

We can now summarize the communication costs per checking protocol:

ΠSac-Check: The sacrificing check requires

sizeA
Sac-Check := 2 ·m · (k + s) · d0 · d1

sizeT
Sac-Check := (2 ·m · t+m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.

ΠIP-Check: The inner product check results requires

sizeA
IP-Check := (m+ 1) · (k + s) · d0 · d1

sizeT
IP-Check := ((m+ 1) · t+m) · (k + s) · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.

ΠComp-Check: The compressed multiplication check results requires

sizeA
Comp-Check := ((2ν − 1) · logν(m) + 3) · k · d0 · d1

sizeT
Comp-Check := (((2ν − 1) · logν(m) + 4) · t+ 1) · k · d0 · d1

bits of additional communication for additive, resp. threshold, sharing.

ΠRing-Check: For additive sharing, this check has no overhead. In the threshold
case, this procedure requires one additional share input and one share

230 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

reconstruction in GR(2k+src , d0) to the overall proof size, hence the total
costs are

sizeA
Ring-Check := 0

sizeT
Ring-Check := (t+ 1) · (k + src) · d0

bits of communication for additive, resp. threshold, sharing.

Here we do not take into account the cost of the verifier sending a challenge
or a seed for outputs of the OR oracle. In the non-interactive case, these
are obtained from the Fiat–Shamir transform and therefore free in terms of
communication; in the interactive case however, the verifier sends λ bits per
“round” of dependent calls to OR.

7.5.3 Overall Costs

Finally, we can present the overall communication cost, i.e., the proof size. Note
here that the cost for sizeInput depends on k + src, rather than the potentially
smaller k + s.

sizeProof = sizeCommit + τout · (sizeInput + τin · sizeCheck) + τin · sizeChallenge

7.5.4 Concrete Comparison of the Three ΠMult-Check Subproto-
cols

To compare our different protocols concretely with one another, we fix certain
choices for σ, k and m and examined the per-multiplication-gate communication
cost of a full proof σ bits of security. The size presented in the tables corresponds
to the communication cost of an entire proof, except for the challenges sent
from the verifier. That is, we only examine the communication from the prover
towards the verifier, which also gives a good idea of the proof size that would
be incurred when the protocol is transformed to a non-interactive proof by the
Fiat-Shamir transform.

All our experimental validations were computed with #inputs = 128 elements
in Z2k . Since the additive sharing has some optimizations for random sharings
and ΠRing-Check and does not require d0 > 1 to enable sharing values across
N parties, it generally comes out as the optimal choice for the configurations
examined here.

PROTOCOL COMMUNICATION COSTS 231

When combining our protocols with the packing techniques of Section 7.6,
the balance shifts since a threshold t < N − 1 gives better soundness per
parallel repetition, allows for more packing, and compensates for the larger d0
by performing more parallel proofs. Out of interest for this trade-off, we present
the parameter sets and associated costs for additive and threshold secret sharing
separately.

We observe that for ΠSac-Check and ΠIP-Check, which require at least m openings
each, the optimal choice for d1 is one since the overhead for d0 · s extra bits is
generally smaller than d0 · (d1 − 1) · k extra bits, even though the size of inputs
and injected multiplications grows as well. When the communication due to
the check is asymptotically smaller than the communication due to the input of
the extended witness, it becomes preferable to avoid the extra d0 · s bits per
multiplication cost in the input already.

Table 7.3: Cost comparison for σ = 40, m = 1024 with threshold secret sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 63 1 6 1 2 17 / 1 7 748
ΠIP-Check 255 3 8 1 3 31 / 1 2 539
ΠCompress 63 1 6 4 / 18 4 1 7 236

64
ΠSac-Check 255 3 8 1 3 31 / 1 2 1 413
ΠIP-Check 255 3 8 1 3 31 / 1 2 1 012
ΠCompress 63 1 6 4 / 18 4 1 7 452

256
ΠSac-Check 255 3 8 1 3 31 / 1 2 5 399
ΠIP-Check 255 3 8 1 3 31 / 1 2 3 846
ΠCompress 63 1 6 4 / 18 2 1 7 1 726

Since we can observe that ΠCompress consistently results in the smallest proof
sizes, we further also look at the overhead of this protocol. That is, we investigate
the ratio of proof size to the theoretical optimum of k · (#inputs +m) bits for
any protocol that needs to inject the results of multiplications. This rate is a
constant that mostly depends on the target value of σ and decreases slightly as
the number of multiplications increases. Since the choice of k doesn’t influence
the choice of multiplication check, it also has no further impact on the overhead.

232 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

Table 7.4: Cost comparison for σ = 40, m = 1024 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 7 / 1 6 116
ΠIP-Check 63 1 1 8 / 1 7 82
ΠCompress 15 1 12 / 4 1 11 87

64
ΠSac-Check 255 1 1 7 / 1 6 191
ΠIP-Check 255 1 1 7 / 1 6 137
ΠCompress 63 1 14 / 4 1 7 135

256
ΠSac-Check 255 1 1 7 / 1 6 641
ΠIP-Check 255 1 1 7 / 1 6 443
ΠCompress 63 1 14 / 4 1 7 411

Table 7.5: Cost comparison for σ = 40, m = 32768 with threshold secret sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 255 3 8 1 3 31 / 1 2 22 449
ΠIP-Check 255 3 8 1 3 31 / 1 2 15 729
ΠCompress 63 1 6 4 / 17 4 1 7 5 459

64
ΠSac-Check 255 3 8 1 3 31 / 1 2 42 953
ΠIP-Check 255 3 8 1 3 31 / 1 2 30 090
ΠCompress 63 1 6 4 / 17 4 1 7 10 895

256
ΠSac-Check 255 3 8 1 3 31 / 1 2 165 979
ΠIP-Check 255 3 8 1 3 31 / 1 2 116 252
ΠCompress 63 1 6 4 / 17 2 1 7 43 476

PROTOCOL COMMUNICATION COSTS 233

Table 7.6: Cost comparison for σ = 40, m = 32768 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 7 / 1 6 2 836
ΠIP-Check 255 1 1 7 / 1 6 1 900
ΠCompress 255 1 16 / 8 1 6 945

64
ΠSac-Check 255 1 1 7 / 1 6 5 143
ΠIP-Check 255 1 1 7 / 1 6 3 439
ΠCompress 255 1 16 / 8 1 6 1 745

256
ΠSac-Check 255 1 1 7 / 1 6 18 985
ΠIP-Check 255 1 1 7 / 1 6 12 673
ΠCompress 255 1 14 / 4 1 6 6 531

Table 7.7: Cost comparison for σ = 128, m = 32768 with threshold secret
sharing.

k Protocol N t d0 d1 s src ν τin τout Proof size in kB

32
ΠSac-Check 255 2 8 1 2 23 / 1 9 68 673
ΠIP-Check 255 3 8 1 4 39 / 1 6 48 550
ΠCompress 63 1 6 4 / 17 4 1 22 17 158

64
ΠSac-Check 255 3 8 1 4 39 / 1 6 130 798
ΠIP-Check 255 3 8 1 4 39 / 1 6 91 631
ΠCompress 63 1 6 4 / 17 4 1 22 34 239

256
ΠSac-Check 255 3 8 1 4 39 / 1 6 499 875
ΠIP-Check 255 3 8 1 4 39 / 1 6 350 119
ΠCompress 63 1 6 4 / 17 2 1 22 136 637

234 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

Table 7.8: Cost comparison for σ = 128, m = 32768 with additive secret sharing.

k Protocol N d0 d1 s ν τin τout Proof size in kB

32
ΠSac-Check 255 1 1 9 / 1 17 8 443
ΠIP-Check 255 1 1 9 / 1 17 5 655
ΠCompress 255 1 16 / 8 1 17 2 677

64
ΠSac-Check 255 1 1 9 / 1 17 14 980
ΠIP-Check 255 1 1 9 / 1 17 10 016
ΠCompress 255 1 16 / 8 1 17 4 944

256
ΠSac-Check 255 1 1 9 / 1 17 54 199
ΠIP-Check 255 1 1 9 / 1 17 36 179
ΠCompress 255 1 16 / 8 1 17 18 549

PACKING 235

7.6 Packing

In this section, we present two orthogonal ways in which our protocols can
be extended to provide SIMD-style packing for parallel proofs of multiple
independent statements. We then discuss how this packing can be applied to
achieve parallelization of proofs for structured circuits.

7.6.1 Packing in the Shamir Domain

The most common way to achieve packing, when using Shamir secret sharing,
is to hide multiple secrets in the same polynomial by ensuring the sharing
polynomial p evaluates to p(α0) = v0, p(α1) = v1, . . . , p(αℓ−1) = vℓ−1 when
sharing ℓ values, for α0, . . . , αℓ+N−1 ∈ Ex(R). Of course, the shares for the
parties should then be evaluations at αℓ, . . . , αℓ+N−1 in order to preserve privacy.

The degree of p now must become t+ ℓ− 1 to ensure that t parties still learn
nothing (including algebraic relations between values) about the shared secrets.
This implies that opening a shared value now requires t+ ℓ shares, rather than
the regular t+ 1. In the context of our protocols however, this does not mean
we need to open more commitments towards the verifier since either the opened
value is assumed to be known (in the case of ΠZero-Check) or provided as part
of the proof (in the case of a normal reconstruction). In both of these cases,
the additional knowledge effectively acts as ℓ additional known shares at the
evaluation points α0, . . . , αℓ−1.

Applying this technique to our protocols then allows us to prove ℓ separate
witnesses for an identical circuit in parallel. The impact on the communication
cost is twofold: Ex(GR(2k, d0)) should be large enough to allow for t+ ℓ points
and hence 2d0 ≥ t + ℓ, and any reconstruction must provide ℓ reconstructed
values as part of the proof. Importantly however, the size of sharing of the
(extended) witness does not grow, resulting in an approach that is cheaper than
performing ℓ separate proofs independently.

7.6.2 Packing in the Galois Domain

Our second approach to packing makes use of the “extra space” that is found
in a GR(2k, d0) element. Rather than having to send k · d0 bits to represent a
single k-bit value, we can send d0 such values, each in its own coefficient of the
Galois ring element, considering it more as a Z2k -module of dimension d0.

236 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

As long as any operation the parties perform on their shares is an operation
for this module (so addition and scalar multiplication by scalars in Z2k), the
actions of the secret sharing and reconstruction are not further impeded. Losing
the ability to perform scalar multiplication with values from the entire space
GR(2k, d0) incurs some cost on the soundness of ΠSac-Check and ΠIP-Check, where
the verifier’s random coefficients can now only come from Z2k instead, leading
to a soundness error of 2−(s+1)·d1 rather than 2−(s+1)·d1·d0 .

If ΠCompress is used, then it is necessary to deal with the polynomial interpolation
needed in ΠCompress, which requires some scalar multiplication with values
coming from an exceptional set of at least size 2 · ν. To handle this case, we
suggest two possible approaches.

Reducing module dimension. The first approach plays with the same
concept described before. It uses the additional free space available in
GR(2k, d0), but rather than seeing it as a Z2k -module, it treats it as a
GR(2k, dinterp)-module of dimension d0

dinterp
, subject to 2dinterp ≥ 2 · ν to allow

for the interpolation.

Tweak the lifting. In the second approach, we tweak the “local lifting”
from GR(2k, d0) to GR(2k, d0 · d1). Rather than treating the larger
ring as a degree d1 extension of the smaller one, we can choose d1
such that gcd(d0, d1) = 1, and construct the larger ring as a degree
d0 extension of GR(2k, d1), even though the input lies in GR(2k, d0). To
see why this works, we can consider GR(2k, d0 · d1) = Z2k [β, γ], where
GR(2k, d0) = Z2k [β] and GR(2k, d1) = Z2k [γ]. Due to our restriction
that gcd(d0, d1) = 1, β and γ are algebraically independent, allowing us
to reinterpret Z2k [β, γ] = (Z2k [β])[γ] = (Z2k [γ])[β]. In the interpretation
(Z2k [γ])[β], we are now left with a form that allows us to treat these
values as a GR(2k, d1)-module of dimension d0. When doing this, the
only further constraint we have is that 2d1 ≥ 2 · ν, while being able to
fully pack all d0 input coefficients.

These approaches incur some loss in soundness, resulting in a cheating probability
for the multiplication checks of 2−d1· d0

dinterp or 2−d1 respectively.

Although the loss in soundness necessitates more communication to return to
the same level of security, the reduction in communication when averaged over
the parallel proof instances brings some benefits. When performing d0 proofs
in parallel, neither the communication for the input of the extended witness,
nor the communication to reconstruct a secret-shared value increase. When all
coefficients in the input sharing are filled with actual inputs, we also no longer

PACKING 237

need to perform ΠRing-Check, as all GR(2k, d0) elements now correspond to a
valid set of d0 elements in Z2k .

We also considered the use of Reverse Multiplication-Friendly Embeddings
(RMFEs), as introduced by [CCXY18], for this sort of packing, but since
this only provides Z2k -linearity, it is incompatible with our threshold secret
sharing. Additionally, RMFEs only provide a constant packing rate, whereas
our technique succeeds in utilizing the available space maximally.

7.6.3 Multi-Round Computations

Instead of proving some ℓ independent instances of a circuit in parallel, one
would often prefer to use this packing to prove a single instance more efficiently,
either by performing multiple of the “outer” repetitions in parallel, or by
performing multiple gates of the circuit in parallel. As the challenges provided
by the verifier are shared across the parallel instances being proved, the former is
unfortunately not possible. The latter however, can be achieved by introducing a
gadget that checks whether two secret shared values JaK and JbK are (prescribed)
permutations.

Depending on the efficiency of such a check, this could allow optimizing for
circuits that are wide enough (that is, circuits that perform enough independent
multiplications in parallel), to only allowing optimization for circuits that are
highly structured. As an example of such structured circuits, one could consider
a computation that proceeds in several identical rounds, such as a circuit that
performs several consecutive RAM accesses like in Section 7.7. In an ideal
scenario, the permutation check can be performed mostly entirely locally, with
a final ΠZero-Check at the end of the protocol, yielding an improvement in
communication cost of factor ℓ practically for free. For the permutation checks
we will describe here, a highly structured/repetitive circuit should be preferred,
however.

To check the reordering of a Shamir packed secret sharing, each party can re-
share their share and enable a private reconstruction of the underlying secrets,
which can then be re-ordered and eventually checked in batch with a random
linear combination and ΠZero-Check. This results in t · (2 ·N − t) ring elements
of communication to perform the re-sharing. To check the reordering of Galois
coefficients in GR(2k, d), we let the prover inject d sharings of Z2k elements Mi

(which need to be checked through ΠRing-Check), which can be used to mask
corresponding coefficients in a and b identically and provide privacy of the values.
Then we can perform a (batched) ΠZero-Check(a+

∑
i x

iMi− b−
∑

i x
π(i)Mi) to

validate the permutation. This incurs a cost of d ring elements per permutation
check to input the mask values Mi.

238 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

7.7 RAM Application

In this section, we show how to construct the Ccheck circuit of [DOTV22] to
verify the consistency of a series of T read or write accesses to an initial array
L of size N . Our Ccheck circuit is very similar to that of [DOTV22] albeit with
minor modifications to fit our ring structure. In particular, we cannot use the
EqCheck sub-circuit that crucially relies on the underlying field structure and
we tweak the PermCheck to use the Generalized Schwartz-Zippel (Lemma 7.1).
In addition, we assume a large exceptional set. In all the sub-circuits of this
section, we overload the notation J.K to denote sensitive values that cannot be
revealed in the zero-knowledge proof.

First, we introduce the main building blocks, i.e. PermCheck and BdCheck, and
later in 7.7.3, we describe the ring version of Ccheck.

7.7.1 Permutation Check

First, we design a procedure PermCheck, see Figure 7.7, to verify that two
arrays (Ja1K, . . . , JaSK) and (Jb1K, . . . , JbSK) of S shared elements are one a
permutation of the other. The idea behind the check is to define two polynomials
PA(X) =

∏
i∈[S](X−ai) and PB(X) =

∏
i∈[S](X−bi) which are identical if and

only if both arrays are a permutation of each other, and then use polynomial
identity testing to verify this is indeed the case. Both polynomials PA and PB

are of degree S, thus the Generalized Schwartz-Zippel (Lemma 7.1) states that
if A is not a permutation of B (i.e. PA ̸= PB), the check passes with probability
at most S

2d0·d1 .

In addition, we also describe another procedure, given in Figure 7.8, for when
the ai and bi are themselves tuples of 4 elements — looking ahead, the array
to be checked consists of tuples of 4 elements. This protocol is similar to
the previous one, except we first compress our tuple into a single element.
Assuming that A and B are not a permutation of each other, then for all
permutations π there exists at least one tuple (a(1)

i , a
(2)
i , a

(3)
i , a

(4)
i) and one

tuple (b(1)
π(i), b

(2)
π(i), b

(3)
π(i), b

(4)
π(i)) that differs. The probability that such tuples are

compressed into ai and bπ(i) respectively such that ai = bπ(i) is bounded by the
Generalized Schwartz-Zippel lemma for 4-variate polynomial of total degree
4 by 4

2d0·d1 . By union bound, the check thus passes with probability at most
S+4

2d0·d1 .

RAM APPLICATION 239

PermCheck

Inputs: JAK = (Ja1K, . . . , JaSK) and JBK = (Jb1K, . . . , JbSK) both over
GR(2k, d0)

Protocol:

1. Lift JaiK and JbiK from GR(2k, d0) to GR(2k, d0 · d1).
2. s← OR such that s ∈ Ex(GR(2k, d0 · d1)).
3. Add the S− 1 multiplication gates necessary to compute JPA(s)K =

Πi∈[S](s− JaiK) and similarly for JPB(s)K = Πi∈[S](s− JbiK).
4. Add JPA(s)K− JPB(s)K to the list of outputs.

Figure 7.7: Permutation check

PermCheck for Tuples

Inputs: JAK = ((Ja(1)
1 K, Ja(2)

1 K, Ja(3)
1 K, Ja(4)

1 K) . . . , (Ja(1)
S K, . . . , Ja(4)

S K)) and
JBK = ((Jb(1)

1 K, Jb(2)
1 K, Jb(3)

1 K, Jb(4)
1 K) . . . , (Jb(1)

S K, . . . , Jb(4)
S K)) both shared

over GR(2k, d0)

Protocol:

1. Lift Ja(j)
i K and Jb(j)

i K from GR(2k, d0) to GR(2k, d0 · d1).
2. r = (r(1), r(2), r(3), r(4))← OR such that r(j) ∈ Ex(GR(2k, d0 · d1))

3. For i ∈ [S] add the linear gates to compute JaiK = Σj∈[4]Ja
(j)
i · r(j)K

and JbiK = Σj∈[4]Jb
(j)
i · r(j)K

4. s← OR such that s ∈ Ex(GR(2k, d0 · d1)).
5. Add the S− 1 multiplication gates necessary to compute JPA(s)K =

Πi∈[S](s− JaiK) and similarly for JPB(s)K = Πi∈[S](s− JbiK).
6. Add JPA(s)K− JPB(s)K to the list of outputs.

Figure 7.8: Permutation check for tuples

7.7.2 Bound Check

The bound check BdCheck is exactly the same as [DOTV22]. For completeness,
we recall it in Figure 7.9. It checks in zero-knowledge that a set of T sensitive

240 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

values are contained between two public bounds, B1, B1, with B1 < B2.

BdCheck

Input: The lower and upper bounds B1 < B2.
JLK = [B1, B1 + 1, . . . , B2, Jx1K, . . . , JxT K] of size S
JL′K that contains the entries of L sorted from lowest to highest (with
all the entries sensitive)

Protocol:

1. Jis_permutationK← PermCheck(JLK, JL′K)
2. For i ∈ [S − 1]

(a) JαiK← JL′[i+ 1]K− JL′[i]K
(b) JλiK← JαiK · J1− αiK.

3. Add all the following to the list of outputs:
• Jis_permutationK
• JλiK for i ∈ [S − 1]
• JL′[1]K−B1

• JL′[S]K−B2

Figure 7.9: Bound Check for a batch of sensitive values

7.7.3 Array Access Check

We now describe our version of Ccheck, see Figure 7.10. We assume the memory
has N slots and is first initialized with sensitive values Mi. The array L consists
of tuples of the form

(memory_address︸ ︷︷ ︸
ℓ

, global_timestamp︸ ︷︷ ︸
t

, operation︸ ︷︷ ︸
op

, data︸︷︷︸
d

).

Here, ℓ ∈ [N], t ∈ [N + T], op ∈ {0, 1} (0 for read, 1 for write), and d is the
data that has been read or written.

Intuition Behind the Check: The protocol takes as input the initial array M
arranged into a list L as described before. The list of tuples is sorted first by
the address ℓ, and then by the timestamp t, forming a list L′ which consists

RAM APPLICATION 241

Ccheck

Input: JLK = [(1, 1, 1, JM1K), . . . (N,N, 1, JMN K),
(JlN+1K, N+1, JopN+1K, JdN+1K), . . . , (JlN+T K, N+T, JopN+T K, JdN+T K)]
JL′K containing entries of L sorted first by ℓ then by t.

Protocol:

1. Jis_permutationK← PermCheck(JLK, JL′K)
2. For i ∈ [N + T − 1] do

(a) JαiK← 1− (Jℓ′i+1K− Jℓ′iK)
(b) JλiK← JαiK · J1− αiK.
(c) Jτ̃iKj ← JαiK, Jt′i+1 − t′iK and JτiK← Jτ̃iK + (1− JαiK).
(d) JζiK← JopiK · J1− opiK.
(e) JβiK← Jd′iK− Jd′i+1K.
(f) Jγ̃iK← JαiK · JβiK and JγiK← Jγ̃iK · (1− Jopi+1K).

3. Jis_in_boundK← BdCheck(({JτiK})i∈[N+T−1], 1, N + T − 1)
4. Add all the following to the list of outputs

• Jis_permutationK
• JλiK for i ∈ [N + T − 1]
• JγiK for i ∈ [N + T − 1]
• JζiK for i ∈ [N + T − 1]
• Jis_in_boundK
• N − Jℓ′N+T K

Figure 7.10: Complete checking circuit for random memory accesses

of contiguous blocks for each address ℓ = 1, . . . , N that list the consecutive
accesses to the same address ℓ sorting chronologically starting with writing the
initial value Mℓ.

We need to check the following conditions hold:

• Each block concerns one valid address and all addresses are covered

• Inside each block, the instructions are ordered by their timestamp

• If the operation is read, then the read value matches the previous value
at that address

242 ZK-FOR-Z2K: MPC-IN-THE-HEAD ZERO-KNOWLEDGE PROOFS FOR Z2K

• Each operation is either a read or a write.

The used variables carry the following meaning:

• αi = 1 if and only if ℓ′i = ℓ′i+1 and 0 otherwise, i.e., when the next tuple
describes an access to the same address

• λi = 0 if and only if αi ∈ {0, 1}

• τi is the difference between the timestamps of subsequent accesses
otherwise, τi = 1

• ζi = 0 if and only if opi ∈ {0, 1}

• βi is the difference between the data d′i − d′i+1 which is supposed to be 0
if the next tuple is a read instruction

• γi = βi if and only if opi+1 is a read operation to the same address;
therefore it is supposed to be zero.

Changes Compared to [DOTV22]: The protocol of [DOTV22] uses the so-
called EqCheck circuit, that takes to shared values JxK, JyK and outputs a shared
bit JbK such that b = 1 if and only if x = y. We cannot use the EqCheck circuit
in our setting, since it relies on the existence of inverses of arbitrary non-zero
elements. Hence, we introduce some changes:

• Changes to the αi:

– Used to be EqCheck(ℓ′i , ℓ′i+1).
– Now is 1− (ℓ′i+1 − ℓ′i) and check αi ∈ {0, 1} with λi.

• Changes to the βi:

– Used to be EqCheck(d′i , d′i+1).
– Now is d′i − d′i+1.

Zero-knowledge. Replacing αi this way does not impact zero-knowledge as for
a honest proof, consecutive memory addresses are at most 1 apart. Replacing
βi does not impact zero-knowledge either as it only appears in γi when both
αi = 1 and op′i+1 = 0 (i.e. read), in which case for an honest proof we expect
βi = 0.

Soundness. Replacing αi does not impact soundness as it is still an equality
check as we ensure αi ∈ {0, 1} with λi. Replacing βi does not impact soundness

BIBLIOGRAPHY 243

either as for αi = 0 or op′i+1 = 1, we allow d′i and d′i+1 to be arbitrary and when
αi = 1 and op′i+1 = 0 we deterministically ensure d′i = d′i+1 with the ΠZero-Check
on γi.

Acknowledgements

The work was partially supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001120C0085, by CyberSecurity
Research Flanders with reference number VR20192203, by the FWO under an
Odysseus project GOH9718N, and by the European Research Council (ERC)
under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No. 803096 (SPEC). The work of the last author was
conducted whilst they were a PhD student at KU Leuven.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
DARPA, the US Government, Cyber Security Research Flanders or the FWO.
The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

Bibliography

[ACD+19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
and Chen Yuan. Efficient information-theoretic secure multiparty
computation over Z/pkZ via galois rings. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS,
pages 471–501. Springer, Cham, December 2019.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Cham, August 2019.

244 BIBLIOGRAPHY

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît
Razet, and Peter Scholl. Appenzeller to brie: Efficient zero-
knowledge proofs for mixed-mode arithmetic and Z2k. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192–211.
ACM Press, November 2021.

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and
Peter Scholl. MozZ2k arella: Efficient vector-OLE and zero-
knowledge proofs over Z2k . In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 329–358. Springer, Cham, August 2022.

[BDK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet:
Short and fast signatures from AES. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer,
Cham, May 2021.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-
based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 495–526. Springer, Cham, May 2020.

[CCKP19] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park.
Verifiable computing for approximate computation. Cryptology
ePrint Archive, Report 2019/762, 2019.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan.
Amortized complexity of information-theoretically secure MPC
revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426.
Springer, Cham, August 2018.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798.
Springer, Cham, August 2018.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

BIBLIOGRAPHY 245

[DOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-based
arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 3022–3036. ACM Press, November 2021.

[DOTV22] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan
Tanguy, and Michiel Verbauwhede. Efficient proof of RAM
programs from any public-coin zero-knowledge system. In
Clemente Galdi and Stanislaw Jarecki, editors, SCN 22, volume
13409 of LNCS, pages 615–638. Springer, Cham, September 2022.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri,
and Peter Scholl. Improved primitives for MPC over mixed
arithmetic-binary circuits. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 823–852. Springer, Cham, August 2020.

[EXY22] Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient
dishonest majority secure computation over Z2k via galois rings. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 383–412. Springer, Cham,
August 2022.

[Feh98] Serge Fehr. Span programs over rings and how to share a secret
from a module, 1998. MSc Thesis, ETH Zurich.

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien
Vergnaud. Zero-knowledge protocols for the subset sum problem
from MPC-in-the-head with rejection. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792
of LNCS, pages 371–402. Springer, Cham, December 2022.

[FR22] Thibauld Feneuil and Matthieu Rivain. Threshold linear secret
sharing to the rescue of MPC-in-the-head. Cryptology ePrint
Archive, Report 2022/1407, 2022.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Berlin, Heidelberg, August 1987.

[GHAH+23] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel
Kaptchuk, Benjamin Perez, and Gijs Van Laer. Efficient proofs
of software exploitability for real-world processors. PoPETs,
2023(1):627–640, January 2023.

246 BIBLIOGRAPHY

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof-systems (extended
abstract). In 17th ACM STOC, pages 291–304. ACM Press, May
1985.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[JSv22] Robin Jadoul, Nigel P. Smart, and Barry van Leeuwen. MPC
for Q2 access structures over rings and fields. In Riham AlTawy
and Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS,
pages 131–151. Springer, Cham, September / October 2022.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient lifting for shorter
zero-knowledge proofs and post-quantum signatures. Cryptology
ePrint Archive, Report 2022/588, 2022.

[LXY23] Fuchun Lin, Chaoping Xing, and Yizhou Yao. More efficient zero-
knowledge protocols over Z2k via galois rings. Cryptology ePrint
Archive, Report 2023/150, 2023.

[Sha79] Adi Shamir. How to share a secret. Communications of the
Association for Computing Machinery, 22(11):612–613, November
1979.

[SS23] Victor Shoup and Nigel P. Smart. Lightweight asynchronous
verifiable secret sharing with optimal resilience. Cryptology
ePrint Archive, Paper 2023/536, 2023. https://eprint.iacr.
org/2023/536.

https://eprint.iacr.org/2023/536
https://eprint.iacr.org/2023/536

CHAPTER 8

Conclusion

In this thesis, we have tried to build bridges over the gap in algebraic structure
of preference between mathematicians and computers. Due to the differences in
computation each structure is optimized for, it is hard to unequivocally claim
our protocols are better than those that work only over finite fields, but it is
our hope and belief that it is a worthwhile direction of research. The strive for
constructions over Zpk and Z2k in particular allows us to bypass the need for
costly emulation of this structure within finite fields and may bring the benefits
of MPC and ZK protocols closer to a general programming model and within
reach of software developers who may not possess the required mathematical or
cryptological background. The work presented here contributes both new and
improved constructions in this area, as well as a consolidation, generalization
and evaluation of previous work from the literature.

In our attempts for more efficient protocols, we have successfully applied linear
secret sharing schemes, both in their most general form as MSPs and in the
more commonly deployed setting of threshold structures. Our applications
follow both the usual structure for building MPC protocols for arithmetic
circuits, and explore the newer application of threshold secret sharing to the
MPC-in-the-Head paradigm, as well as its interactions with the less studied
constructions over rings.

Finally, in our search for concretely efficient protocols, we have examined the
tradeoff between the public viability of Zero-Knowledge Proofs, and the efficiency
of the prover. In doing so, we constructed concretely efficient ZKP protocols with
a distributed designated verifier. Our protocols achieve an efficient prover with
succinct verifier communication and identifiable abort for arithmetic circuits
over arbitrary finite fields in a setting with an honest supermajority.

247

248 CONCLUSION

Future work

While we make several contributions towards building efficient cryptographic
protocols, the work is never done. There are always more opportunities for
protocol-level improvements that deserve further investigation. The techniques
used by our protocols described in chapter 5, for instance, may deserve further
attention in different security contexts, such as active security with identifiable
abort or guaranteed output delivery for Q3 access structures.

With regard to our distributed verifier zero-knowledge proofs from chapter 6,
several follow-up questions may arise. In the context of this thesis, a first natural
consideration would be to extend our protocols to the ring setting, adapting
our techniques for Z2k and Zpk for DVZK and adapting them appropriately to
the somewhat different performance characteristics and requirements inherent
to a distributed verifier.

Another deficiency of our DVZK protocol is its limitation to a threshold t < N
3 .

By leveraging more cryptographic machinery, it would be interesting to extend
this to a regular honest majority t < N

2 , or even a full-threshold situation. One
of the main hurdles to achieve this will be the demand for identifiable abort
in our security definition, as this fits most naturally with the thresholds we
already achieved.

Recently, a new construction, known as VOLE-in-the-Head,1 has been
successfully applied to VOLE-based designated-verifier ZK protocols with short
(though mostly still linear) proof sizes and good prover efficiency; achieving
public verifiability. A concrete analysis of the differences in performance between
these new publicly verifiable proof systems and our distributed verifier system
may be needed to shed further light on the tradeoffs between the two, and to
determine when which option is the correct choice.

A further question open to future work is concerned with the proof size of
MPCitH-based constructions — among which we can also count Feta, as it
shows many similarities. While the concrete overhead of the proof size over
the number of multiplication gates in the statement circuit is often only a
small constant, the fact that the proof size grows linearly in the size of the
circuit remains potentially problematic for large statements and applications
to verifiable computation. Asking a verifier with limited computational power
to perform a computation of similar size to the original circuit is, after all,
in many cases not an option. Therefore, ZK proof systems that can achieve
sublinear proof size and verification time, without sacrificing the concrete

1VOLE, or Vector Oblivious Linear function Evaluation, can in short be understood as a
method for batch generating correlated randomness between two parties.

CONCLUSION 249

(prover) efficiency advantages offered by the MPC-in-the-Head paradigm, may
be highly coveted, both for in the regular publicly verifiable as the distributed
verifier case.

Finally, looking back at our original inspiration to bring these cryptographical
protocols closer to the execution model of a regular computer, we may notice an
oversight. While indeed additions and multiplications in a CPU correspond to
the same operations on the ring Z2k , the computer is not limited to performing
only additions and multiplications. It is also able to look at the individual bits
within those numbers, extract and recompose them, and even perform bitwise
operations such as XOR, AND, and OR on them. By making the protocols work
with bits (or F2 elements, equivalently) as its basic building blocks, existing
protocols are able to perform these operations, and emulate the Z2k arithmetic
with bits. However, an approach that can combine the decomposition into
bits with native support for ring arithmetic without an additional logarithmic
overhead has not been achieved yet. Such a construction, if possible in a secure
manner, would enable a more faithful cryptographical execution of “normal”
programs, and bring these powerful building blocks closer to broad adoption
and general utility.

BIBLIOGRAPHY 251

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter,
Yehuda Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and
Or Weinstein. Optimized honest-majority MPC for malicious
adversaries - breaking the 1 billion-gate per second barrier. In
2017 IEEE Symposium on Security and Privacy, pages 843–862.
IEEE Computer Society Press, May 2017.

[ACD+19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero,
and Chen Yuan. Efficient information-theoretic secure multiparty
computation over Z/pkZ via galois rings. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS,
pages 471–501. Springer, Cham, December 2019.

[ACD+20] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel
Escudero, Matthieu Rambaud, Chaoping Xing, and Chen Yuan.
Asymptotically good multiplicative LSSS over Galois rings and
applications to MPC over Z/pkZ. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 151–180. Springer, Cham, December 2020.

[ACF02] Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-
interactive distributed-verifier proofs and proving relations among
commitments. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 206–223. Springer, Berlin, Heidelberg,
December 2002.

[ADEN19] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof.
An efficient passive-to-active compiler for honest-majority MPC
over rings. Cryptology ePrint Archive, Report 2019/1298, 2019.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable
relation sharing and multi-verifier zero-knowledge in two rounds:
Trading NIZKs with honest majority. Cryptology ePrint Archive,
Report 2022/167, 2022.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully

252 BIBLIOGRAPHY

linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
67–97. Springer, Cham, August 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable zero knowledge with no trusted setup. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Cham,
August 2019.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît
Razet, and Peter Scholl. Appenzeller to brie: Efficient zero-
knowledge proofs for mixed-mode arithmetic and Z2k. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192–211.
ACM Press, November 2021.

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and
Peter Scholl. MozZ2k arella: Efficient vector-OLE and zero-
knowledge proofs over Z2k . In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 329–358. Springer, Cham, August 2022.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin
Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,
Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation
goes live. In Roger Dingledine and Philippe Golle, editors, FC
2009, volume 5628 of LNCS, pages 325–343. Springer, Berlin,
Heidelberg, February 2009.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90–108. Springer, Berlin, Heidelberg, August 2013.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive
proofs (extended abstract). In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 81–95. Springer,
Berlin, Heidelberg, April 1991.

[BDK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet:
Short and fast signatures from AES. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer,
Cham, May 2021.

BIBLIOGRAPHY 253

[BdSGJ+24] Lennart Braun, Cyprien Delpech de Saint Guilhem, Robin Jadoul,
Emmanuela Orsini, Nigel P. Smart, and Titouan Tanguy. ZK-
for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k . In
Elizabeth A. Quaglia, editor, Cryptography and Coding, pages
137–157, Cham, 2024. Springer Nature Switzerland.

[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge
proof systems tolerating a faulty minority. Journal of Cryptology,
4(2):75–122, January 1991.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 420–432. Springer, Berlin, Heidelberg, August
1992.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson.
Multi-prover interactive proofs: How to remove intractability
assumptions. In 20th ACM STOC, pages 113–131. ACM Press,
May 1988.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and
Nigel P. Smart. Feta: Efficient threshold designated-verifier zero-
knowledge proofs. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 293–306. ACM
Press, November 2022.

[BKZZ20] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and
Bingsheng Zhang. Crowd verifiable zero-knowledge and end-to-end
verifiable multiparty computation. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 717–748. Springer, Cham, December 2020.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. In Sushil
Jajodia and Javier López, editors, ESORICS 2008, volume 5283
of LNCS, pages 192–206. Springer, Berlin, Heidelberg, October
2008.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter
Scholl. Mac’n’cheese: Zero-knowledge proofs for boolean and
arithmetic circuits with nested disjunctions. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828
of LNCS, pages 92–122, Virtual Event, August 2021. Springer,
Cham.

254 BIBLIOGRAPHY

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-
based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 495–526. Springer, Cham, May 2020.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure
MPC with linear communication complexity. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 213–230. Springer,
Berlin, Heidelberg, March 2008.

[CCKP19] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park.
Verifiable computing for approximate computation. Cryptology
ePrint Archive, Report 2019/762, 2019.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan.
Amortized complexity of information-theoretically secure MPC
revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426.
Springer, Cham, August 2018.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl,
and Chaoping Xing. SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798.
Springer, Cham, August 2018.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share
conversion, pseudorandom secret-sharing and applications to
secure computation. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 342–362. Springer, Berlin, Heidelberg, February
2005.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General
secure multi-party computation from any linear secret-sharing
scheme. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 316–334. Springer, Berlin, Heidelberg, May 2000.

BIBLIOGRAPHY 255

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo
Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-scale honest-
majority MPC for malicious adversaries. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 34–64. Springer, Cham, August 2018.

[CRX19] Ronald Cramer, Matthieu Rambaud, and Chaoping Xing.
Asymptotically-good arithmetic secret sharing over Z/(pℓZ) with
strong multiplication and its applications to efficient MPC.
Cryptology ePrint Archive, Report 2019/832, 2019.

[DDOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela
Orsini, and Nigel P. Smart. BBQ: Using AES in picnic signatures.
In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019,
volume 11959 of LNCS, pages 669–692. Springer, Cham, August
2019.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and
unconditionally secure multiparty computation. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590.
Springer, Berlin, Heidelberg, August 2007.

[DOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-based
arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 3022–3036. ACM Press, November 2021.

[DOTV22] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan
Tanguy, and Michiel Verbauwhede. Efficient proof of RAM
programs from any public-coin zero-knowledge system. In
Clemente Galdi and Stanislaw Jarecki, editors, SCN 22, volume
13409 of LNCS, pages 615–638. Springer, Cham, September 2022.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, Berlin, Heidelberg,
August 2012.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri,
and Peter Scholl. Improved primitives for MPC over mixed
arithmetic-binary circuits. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 823–852. Springer, Cham, August 2020.

256 BIBLIOGRAPHY

[EKO+20] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen,
Joonas Puura, and Mark Simkin. Use your brain! Arithmetic
3PC for any modulus with active security. In Yael Tauman Kalai,
Adam D. Smith, and Daniel Wichs, editors, ITC 2020, pages
5:1–5:24. Schloss Dagstuhl, June 2020.

[EXY22] Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient
dishonest majority secure computation over Z2k via galois rings. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 383–412. Springer, Cham,
August 2022.

[Feh98] Serge Fehr. Span programs over rings and how to share a secret
from a module, 1998. MSc Thesis, ETH Zurich.

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien
Vergnaud. Zero-knowledge protocols for the subset sum problem
from MPC-in-the-head with rejection. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part II, volume 13792
of LNCS, pages 371–402. Springer, Cham, December 2022.

[FR22] Thibauld Feneuil and Matthieu Rivain. Threshold linear secret
sharing to the rescue of MPC-in-the-head. Cryptology ePrint
Archive, Report 2022/1407, 2022.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Berlin, Heidelberg, August 1987.

[GHAH+23] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel
Kaptchuk, Benjamin Perez, and Gijs Van Laer. Efficient proofs
of software exploitability for real-world processors. PoPETs,
2023(1):627–640, January 2023.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof-systems (extended
abstract). In 17th ACM STOC, pages 291–304. ACM Press, May
1985.

BIBLIOGRAPHY 257

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or A completeness theorem for protocols with
honest majority. In Alfred Aho, editor, 19th ACM STOC, pages
218–229. ACM Press, May 1987.

[Gá95] Anna Gál. Combinatorial methods in boolean function complexity,
1995. PhD Theses, University of Chicago.

[HBHW16] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox.
Zcash protocol specification. GitHub: San Francisco, CA, USA,
2016.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization of
adversaries tolerable in secure multi-party computation (extended
abstract). In James E. Burns and Hagit Attiya, editors, 16th ACM
PODC, pages 25–34. ACM, August 1997.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM
Press, November 2013.

[JSv22] Robin Jadoul, Nigel P. Smart, and Barry van Leeuwen. MPC
for Q2 access structures over rings and fields. In Riham AlTawy
and Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS,
pages 131–151. Springer, Cham, September / October 2022.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party
computation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590. ACM
Press, November 2020.

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. Arbitrum: Scalable, private
smart contracts. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 1353–1370. USENIX Association,
August 2018.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum

258 BIBLIOGRAPHY

signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious
transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830–842. ACM Press, October 2016.

[KRSW18] Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood.
Reducing communication channels in MPC. In Dario Catalano
and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS,
pages 181–199. Springer, Cham, September 2018.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient lifting for shorter
zero-knowledge proofs and post-quantum signatures. Cryptology
ePrint Archive, Report 2022/588, 2022.

[KZF+18] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-
Sanchez, and Arthur Gervais. Commit-Chains: Secure, scalable
off-chain payments. Cryptology ePrint Archive, Report 2018/642,
2018.

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge.
In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
245–263. Springer, Berlin, Heidelberg, February 2005.

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby.
Linear-time and post-quantum zero-knowledge SNARKs for R1CS.
Cryptology ePrint Archive, Report 2021/030, 2021.

[LXY23] Fuchun Lin, Chaoping Xing, and Yizhou Yao. More efficient zero-
knowledge protocols over Z2k via galois rings. Cryptology ePrint
Archive, Report 2023/150, 2023.

[Mau06] Ueli M. Maurer. Secure multi-party computation made simple.
Discrete Applied Mathematics, 154(2):370–381, 2006.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group
homomorphisms. DCC, 77(2-3):663–676, 2015.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 239–252. Springer, New York, August 1990.

BIBLIOGRAPHY 259

[Sha79] Adi Shamir. How to share a secret. Communications of the
Association for Computing Machinery, 22(11):612–613, November
1979.

[SS23] Victor Shoup and Nigel P. Smart. Lightweight asynchronous
verifiable secret sharing with optimal resilience. Cryptology
ePrint Archive, Paper 2023/536, 2023. https://eprint.iacr.
org/2023/536.

[SW19] Nigel P. Smart and Tim Wood. Error detection in monotone span
programs with application to communication-efficient multi-party
computation. In Mitsuru Matsui, editor, CT-RSA 2019, volume
11405 of LNCS, pages 210–229. Springer, Cham, March 2019.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the
quantum random oracle model. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 755–784. Springer, Berlin, Heidelberg, April 2015.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In 2021
IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE
Computer Society Press, May 2021.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa,
and Ion Stoica. DIZK: A distributed zero knowledge proof system.
In William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018, pages 675–692. USENIX Association, August 2018.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations
(extended abstract). In 23rd FOCS, pages 160–164. IEEE
Computer Society Press, November 1982.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang.
QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press,
November 2021.

[YW22] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs
to multiple verifiers. Cryptology ePrint Archive, Report 2022/063,
2022.

https://eprint.iacr.org/2023/536
https://eprint.iacr.org/2023/536

Statement on the Use of Generat-
ive AI

I did not use generative AI assistance tools during the research/writing process
of my thesis.

The text/code/images in this thesis are my own (unless otherwise specified) and
generative AI has only been used in accordance with the KU Leuven guidelines
and appropriate references have been added. I have reviewed and edited the
content as needed and I take full responsibility for the content of the thesis.

261

Curriculum

Robin Jadoul obtained a Bachelor’s degree in computer science from the
University of Antwerp, Belgium, in 2018. He then continued his studies at ETH
Zürich, Switzerland, where he graduated with a Master’s degree in computer
science, with a major in theoretical computer science, in 2020. His Master’s
thesis handled on the cryptographic topic of deniability in secure messaging
protocols.

Subsequently, he joined the COSIC research group of KU Leuven, Belgium,
as a PhD candidate under the supervision of prof. Nigel P. Smart, where
he works on cryptographic protocols for computation on encrypted data and
privacy-enhancing technologies. His main focus lies in the areas of secure
multiparty computation and zero-knowledge proofs through the MPC-in-the-
Head paradigm.

263

List of publications

• Robin Jadoul, Nigel P. Smart, and Barry van Leeuwen. MPC
for Q2 access structures over rings and fields. In Riham Al-
Tawy and Andreas Hülsing, editors, SAC 2021, volume 13203
of LNCS, pages 131–151. Springer, Cham, September / Octo-
ber 2022

• Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl,
and Nigel P. Smart. Feta: Efficient threshold designated-
verifier zero-knowledge proofs. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
293–306. ACM Press, November 2022

• Lennart Braun, Cyprien Delpech de Saint Guilhem, Robin
Jadoul, Emmanuela Orsini, Nigel P. Smart, and Titouan Tan-
guy. ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs
for Z2k . In Elizabeth A. Quaglia, editor, Cryptography and
Coding, pages 137–157, Cham, 2024. Springer Nature Switzer-
land

• Robin Jadoul, Axel Mertens, Jeongeun Park, and Hilder V. L.
Pereira. NTRU-Based FHE for Larger Key and Message Space.
In Tianqing Zhu and Yannan Li, editors, Information Security
and Privacy, pages 141–160, Singapore, 2024. Springer Nature
Singapore

265

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COSIC
Kasteelpark Arenberg 10, bus 2452

B-3001 Leuven
robin.jadoul@esat.kuleuven.be
https://esat.kuleuven.be/cosic/

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	From Engineering to Cryptography
	Protocols and Efficiency
	Chapter Overview

	Rings of the Form Zpk
	Finite Fields
	Definitions
	Constructions

	Finite Rings of the Form Zpk
	Definitions
	Extensions

	Testing Equality
	Equality of Polynomials
	Random Linear Combinations for Sequence Equality

	Multiparty Computation from Linear Secret Sharing
	Linear Secret Sharing Schemes
	Access Structures
	LSSS for a Given Access Structure
	Monotone Span Programs

	Secure Multiparty Computation (MPC)
	Representing Computation
	Flavours of MPC
	Cost and Efficiency

	Building MPC from Secret Sharing
	Passive Security
	Security with Abort

	Zero-Knowledge Proofs
	Proof and Arguments
	Definitions and Properties
	Knowledge
	Eliminating Interaction

	Knowledge of Homomorphism Preimages
	Proving the Discrete Logarithm
	Exponentiation is a Homomorphism

	Zero-Knowledge Proofs from MPC
	Proofs for General Computation
	Building on MPC

	MPC for Q2 Access Structures over Rings and Fields
	Introduction
	Preliminaries
	Notation
	-Good Rings and the Schwartz-Zippel Lemma
	Monotone and Extended Span Programs
	Linear Secret Sharing Schemes Induced from MSPs and ESPs
	Shamir over Rings, an Example:
	Basic Multi-Party Computation Protocols

	Generating an ESP from an MSP
	Opening Values to One Player and to All Players
	Open to One
	Open to All

	Multiplication Check
	MultCheck1
	MultCheck1'
	MultCheck2
	MacCheck
	Summary

	Offline Preprocessing Protocols
	Comparing Actively Secure Offline Protocols

	Complete Protocols
	Proof of Theorem 5.1
	KRSW Multiplication Costs
	Replicated (3,1) Sharing
	Replicated (5,2) Sharing
	Replicated (10,4) Sharing
	Shamir (3,1) for large p
	Shamir (5,2) for large p
	Shamir (10,4) for large p
	Shamir (3,1) for Z2k
	Shamir (5,2) for Z2k
	Shamir (10,4) for Z2k

	Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs
	Introduction
	Related Work
	Our Contribution
	Applications
	Techniques

	Preliminaries
	Shamir Sharing
	Digital Signatures
	Zero-knowledge Proofs
	Schwartz-Zippel Lemma
	Coin Flipping

	Distributed Verifier Zero-Knowledge Proofs
	Zero-Knowledge in the Threshold Setting
	Examples

	Preprocessing for distributed proofs with honest majority t<n/2
	Distributed proof with t < n/4 corruptions
	Distributed proof with t < n/3 corruptions
	Experiments
	Results

	ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for Z2k
	Introduction
	Our Contribution

	Preliminaries
	Notation
	Rings
	Secret-Sharing Schemes over Rings
	MPC-in-the-Head via Linear Secret Sharing

	Checking Multiplications over Rings
	Sacrifice Based Check
	Inner Product Multiplication Check
	Compressed Multiplication Check

	Checking Base Ring Sharings
	Protocol Communication Costs
	Primitive Costs
	Protocol Costs
	Overall Costs
	Concrete Comparison of the Three MultCheck Subprotocols

	Packing
	Packing in the Shamir Domain
	Packing in the Galois Domain
	Multi-Round Computations

	RAM Application
	Permutation Check
	Bound Check
	Array Access Check

	Conclusion
	Bibliography
	Statement on the Use of Generative AI
	Curriculum

